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Resumo

Sempre que o trabalho de investigação resulta numa nova descoberta, a comunidade ci-

ent́ıfica, e o mundo em geral, enriquece. Mas a descoberta cientı́fica per senãoé sufici-

ente. Para beneficio de todos,é necesśario tornar estas inovações acessı́veis atrav́es da sua

fácil utilizaç̃ao e permitindo a sua melhoria, potenciando assim o progresso cient́ıfico.

Uma nova abordagem na modelação de ńucleos em redes neuronais com Funções de

Base Radial (RBF) foi proposta por Falcãoet al. emFlexible Kernels for RBF Networks

[14]. Esta abordagem define um algoritmo de aprendizagem para classificaç̃ao, inovador

na área da aprendizagem das redes neuronais RBF. Os testes efectuados mostraram que

os resultados estão ao ńıvel dos melhores nestaárea, tornando como um deveróbvio para

com a comunidade cientı́fica a sua disponibilização de forma aberta. Neste contexto, a

motivaç̃ao da implementação do algoritmo de ńucleos flex́ıveis para redes neuronais RBF

(FRBF) ganhou novos contornos, resultando num conjunto de objectivos bem definidos:

(i) integraç̃ao, o FRBF deveria ser integrado, ou integrável, numa plataforma facilmente

acesśıvel à comunidade cientı́fica; (ii) abertura, o ćodigo fonte deveria ser aberto para

potenciar a expansão e melhoria do FRBF; (iii) documentação, imprescind́ıvel para uma

fácil utilizaç̃ao e compreensão; e (iv) melhorias, melhorar o algoritmo original, no proce-

dimento de ćalculo das dist̂ancias e no suporte de parâmetros de configuração. Foi com

estes objectivos em mente que se iniciou o trabalho de implementaç̃ao do FRBF.

O FRBF segue a tradicional abordagem de redes neuronais RBF, com duas camadas,

dos algoritmos de aprendizagem para classificação. A camada escondida, que contém os

núcleos, calcula a distância entre o ponto e uma classe, sendo o ponto atribuı́do à classe

com menor dist̂ancia. Este algoritmo foca-se num método de ajuste de parâmetros para

uma rede de funç̃oes Gaussianas multi-variáveis com formas elı́pticas, conferindo um

grau de flexibilidade extràa estrutura do ńucleo. Esta flexibilidadée obtida atrav́es da

utilização de funç̃oes de modificaç̃ao aplicadas ao procedimento de cálculo da dist̂ancia,

que é essencial na avaliação dos ńucleos. É precisamente nesta flexibilidade e na sua

aproximaç̃ao ao Classificador BayeseanoÓptimo (BOC), com independência dos ńucleos

em relaç̃aoàs classes, que reside a invocação deste algoritmo.

O FRBF divide-se em duas fases, aprendizagem e classificação, sendo ambas seme-

lhantes em relaç̃ao às tradicionais redes neuronais RBF. A aprendizagem faz-se emdois

passos distintos. No primeiro passo: (i) o número de ńucleos para cada classeé definido
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atrav́es da proporç̃ao da varîancia do conjunto de treino associado a cada classe; (ii) o

conjunto de treinóe separado de acordo com cada classe e os centros dos núcleos s̃ao de-

terminados atrav́es do algoritmo K-Means; e (iii)́e efectuada uma decomposição espectral

para as matrizes de covariância para cada núcleo, determinando assim a matriz de vecto-

res pŕoprios e os valores próprios correspondentes. No segundo passo são encontrados os

valores dos parâmetros de ajuste de expansão para cada ńucleo. Aṕos a conclus̃ao da fase

de aprendizagem, obtém-se uma rede neuronal que representa um modelo de classificaç̃ao

para dados do mesmo domı́nio do conjunto de treino. A classificaçãoé bastante simples,

bastando aplicar o modelo aos pontos a classificar, obtendo-se o valor da probabilidade

do ponto pertencer a uma determinada classe. As melhorias introduzidas ao algoritmo

original, definidas aṕos ańalise do prot́otipo, centram-se: (i) na parametrização, permi-

tindo a especificaç̃ao de mais parâmetros, como por exemplo o algoritmo a utilizar pelo

K-Means; (ii) no teste dos valores dos parâmetros de ajuste de expansão dos ńucleos,

testando sempre as variações acima e abaixo; (iii) na indicação de utilizaç̃ao, ou ñao, da

escala na PCA; e (iv) na possibilidade do cálculo da dist̂ancia ser feito ao centróide ouà

classe.

A análiseà plataforma para desenvolvimento do FRBF, e das suas melhorias, resultou

na escolha do R. O Ŕe, ao mesmo tempo, uma linguagem de programação, uma plata-

forma de desenvolvimento e um ambiente. O R foi seleccionadopor várias raz̃oes, de

onde se destacam: (i) abertura e expansibilidade, permitindo a sua utilizaç̃ao e expans̃ao

por qualquer pessoa; (ii) repositório CRAN, que permite a distribuição de pacotes de ex-

pans̃ao; e (iii) largamente usado para desenvolvimento de aplicações estatı́sticas e ańalise

de dados, sendo mesmo o standardde factona comunidade cientı́fica estat́ıstica.

Uma vez escolhida a plataforma, iniciou-se a implementação do FRBF e das suas me-

lhorias. Um dos primeiros desafios a ultrapassar foi a inexistência de documentação para

desenvolvimento. Tal facto implicou a definição de boas práticas e padr̃oes de desenvolvi-

mento espećıficos, tais como documentação e definiç̃ao de varíaveis. O desenvolvimento

do FRBF dividiu-se em duas funções principais,frbf que efectua o procedimento de

aprendizagem e retorna o modelo, epredict uma funç̃ao base do R que foi redefi-

nida para suportar o modelo gerado e queé responśavel pela classificação. As primeiras

vers̃oes do FRBF tinham uma velocidade de execução lenta, mas tal ñao foi inicialmente

considerado preocupante. No entanto, alguns testes ao procedimento de aprendizagem

eram demasiado morosos, passando a velocidade de execução a ser um problema crı́tico.

Para o resolver, foi efectuada uma análise para identificar os pontos de lentidão. Esta

acç̃ao revelou que os procedimentos de manipulação de objectos eram bastante lentos.

Assim, aprofundou-se o conhecimento das funções e operadores do R que permitissem

efectuar essa manipulação de forma mais eficiente e rápida. A aplicaç̃ao desta acç̃ao cor-

rectiva resultou numa redução dŕastica no tempo de execução. O processo de qualidade

do FRBF passou por três tipos de testes: (i) unitários, verificando as funções individual-
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mente; (ii) de caixa negra, testando as funções de aprendizagem e classificação; e (iii) de

precis̃ao, aferindo a qualidade dos resultados. Considerando a complexidade do FRBF e

o número de configuraç̃oes posśıveis, os resultados obtidos foram bastante satisfatórios,

mostrando uma implementação śolida. A precis̃ao foi alvo de atenç̃ao especial, sendo pre-

cisamente aqui onde não foi plena a satisfação com os resultados obtidos. Tal facto advém

das discrep̂ancias obtidas entre os resultados do FRBF e do protótipo, onde comparação

dos resultados beneficiou sempre esteúltimo. Uma ańalise cuidada a esta situação reve-

lou que a diverĝencia acontecia na PCA, queé efectuada de forma distinta. O próprio R

possui formas distintas de obter os vectores próprios e os valores próprios, tendo essas

formas sido testadas, mas nenhuma delas suplantou os resultados do prot́otipo.

Uma vez certificado o algoritmo, este foi empacotado e submetido ao CRAN. Este

processo implicou a escrita da documentação do pacote, das funções e classes envolvidas.

O pacotée distribúıdo sob a licença LGPL, permitindo uma utilização bastante livre do

FRBF e, espera-se, potenciando a sua exploração e inovaç̃ao.

O trabalho desenvolvido cumpre plenamente os objectivos inicialmente definidos. O

algoritmo original foi melhorado e implementado na plataforma standard usada pela co-

munidade cientı́fica estat́ıstica. A sua disponibilizaç̃ao atrav́es de um pacote no CRAN

sob uma licença de código aberto permite a sua exploração e inovaç̃ao. No entanto, a

implementaç̃ao do FRBF ñao se esgota aqui, existindo espaço para trabalho futuro na

reduç̃ao do tempo de execução e na melhoria dos resultados de classificação.

Keywords: Funç̃oes de Base Radial, Redes Neuronais, Núcleos Flex́ıveis, R
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Abstract

This dissertation is focused on the implementation and improvements of theFlexible Ra-

dial Basis Function Neural Networksalgorithm. It is a clustering algorithm that describes

a method for adjusting parameters for a Radial Basis Function neural network of multi-

variate Gaussians with ellipsoid shapes. This provides an extra degree of flexibility to the

kernel structure through the usage of modifier functions applied to the distance computa-

tion procedure.

The focus of this work is the improvement and implementationof this clustering al-

gorithm under an open source licensing on a data analysis platform. Hence, the algorithm

was implemented under the R platform, thede factoopen standard framework among

statisticians, allowing the scientific community to use it and, hopefully, improve it. The

implementation presented several challenges at various levels, such as inexistent develop-

ment standards, the distributable package creation and theprofiling and tuning process.

The enhancements introduced provide a slightly different learning process and extra con-

figuration options to the end user, resulting in more tuning possibilities to be tried and

tested during the learning phase. The tests performed show arobust implementation of

the algorithm and its enhancements on the R platform.

The resulting work has been made available as a R package under an open source

licensing, allowing everyone to used it and improve it. Thiscontribution to the scientific

community complies with the goals defined for this work.

Keywords: Radial Basis Function, Neural Network, Flexible Kernels, R
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Chapter 1

Introduction

Whenever scientific work results in a new discovery, the scientific community, and the

world in general, becomes richer. But the scientific discovery by itself is not sufficient,

it must be accessible and easily usable by everyone, so that people take advantage of

such innovations. Making the scientific breakthroughs accessible to everyone is therefor

a major contribution to the scientific community since it provides a way to everyone use

it, test it and, ultimately, improve it.

An approach for modeling kernels in Radial Basis Function (RBF) networks has been

proposed inFlexible Kernels for RBF Networks[14] by Falc̃aoet al.. This approach focus

on a method for adjusting parameters for a network of multivariate Gaussians with ellip-

soid shapes and provides extra degree of flexibility to the kernel structure. This flexibility

is achieved through the usage of modifier functions applied to the distance computation

procedure, essential for all kernel evaluations.

This new algorithm was an innovation within the neural networks learning area based

on RBF neural networks. A concept proof implementation of thisarchitecture has proved

capable of solving difficult classification problems with good results in real life situations.

This was a stand alone implementation with the specific goal to prove the concept and,

therefor was available only to the research team members. Consequently, making this

work accessible to everyone was the next logical step for this new algorithm.

In this context, an implementation of the Flexible kernels for RBF neural network

(FRBF) algorithm under a widely spread scientific platform arise. A widely used platform

by the scientific community should be targeted, hence the R platform has been chosen,

since it is the open sourcede factostandard statistical platform. The resulting implemen-

tation was also packed and distributed under open source licensing, allowing anyone to

modify it and, eventually, improve it. Some enhancements were performed on the original

algorithm, some focused on the algorithm parameterizationand others on the algorithm

itself. The usage of the available base R functions that were, themselves, already param-

eterized helped on this task and, as a result, a high number ofpossible configurations to

the end user was delivered.
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Chapter 1. Introduction 2

This dissertation is organized as follows: Chapter1 introduces this dissertation, Chap-

ter2 describes the Radial Basis Function neural networks, detailsthe flexible kernels clus-

tering algorithm, which is the genesis of this work, and the improvements performed to it.

The implementation framework R is covered in the Chapter3 and the implementation of

the new algorithm is detailed in Chapter4. Finally, Chapter5 concludes this dissertation

and resumes the goals achieved.

1.1 Motivation

Having obtained such good results with the FRBF tests, it was obvious that it should be

made available to everyone. Hence, the main stimulus behindthis work was to provide an

easy way for the scientific community to use FRBF.

The proof of concept implementation was developed as a standalone application, so it

was a very specific computer program that served a single purpose and was not ready, nor

meant, to be used in any other way. Hence, it did not served thepurpose of distribution

nor integration with frameworks, or other applications, making it a non eligible solution.

There was also a second motivation for this work, focused on the enhancement of the

algorithm. It early became clear that the original algorithm could be improved and a new

implementation was the perfect scenario for such task, since it provided the chance to

perform the enhancements.

Hence, the need of a new FRBF implementation emerged. The motivation of this

work was to (i) provide an easy to use implementation to the scientific community, (ii)

integrate with, or within, a framework, (iii) improve the original algorithm and (iv) be

open to receive improvements from others.

1.2 Goals

The motivation resulted in the set of specific goals. The maingoal of this work was to

deliver a new, open and integrated, implementation of the FRBFand a second goal was to

improve the original algorithm.

These goals have been established after the identification of (i) the need of an FRBF

implementation that would be integrated with, or within, a framework and (ii) the oppor-

tunity of enhance the original algorithm with some improvements. In detail, the goals for

this work have been set as:

Integration. The implementation of FRBF only made sense if it could be integrated with,

or within, a framework or a third party application. The selected platform was R

since R is thede factoopen standard among statisticians. R is also an integrated

suite of software facilities for statistical computing, data manipulation, calculation
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and graphical display. All this makes R a perfect target for this new FRBF imple-

mentation. Delivering the FRBF implementation as a R expansion package com-

plies with this goal.

Open source. In order to allow others to expand and improve FRBF the source code had

to be made open for the public. Thus, the resulting implementation was delivered

under an open source licensing, allowing anyone to access the source code, explore

it and even improve it.

Documentation. The implementation process followed the usual software development

good practices. This means, among other things, that everything is documented.

The entire source code is documented, the distributed R package is documented

and the improvements are also documented. Since there are several distinct docu-

mentation levels involved here, the documentation itself comes in different formats

but is, in general, easily accessible. This provides an easyway to the understanding

of the FRBF implementation to anyone willing to go deeper in thesubject.

Enhancements.The enhancements of the original algorithm were defined as improve-

ments to the distance calculation procedure and the supportfor more configuration

options. The new implementation also had to support the original algorithm spec-

ification, meaning disabling the improvements, a feature that also comes up as a

configuration option. In practice, this means that the end user has more power

and flexibility to configure the algorithm when searching forthe best classification

model for a given domain.

The goals stated above fully respond to the initial motivation identified on the prece-

dent section. The achieve of these goals resulted in an easy way to the scientific commu-

nity to use FRBF on a well known and standard platform.

1.3 Contribution

Regarding the previously stated goals in the previous section, the main contribution of this

work is the deliver of an improved FRBF implementation to the scientific community.

The enhancements performed over the original algorithm area small contribution to

the RBF neural network learning algorithms. The improvementsincluded in this imple-

mentation provide the end user more power and flexibility when parameterizing the learn-

ing task. This results in a much wide number of possibilitiesavailable when searching for

the best classification model for a given problem.

The implementation of the FRBF as a R expansion package is, by itself, a contribu-

tion to thede factostandard statistical platform used by the scientific community. The

packaging of the algorithm provides a standard way to distribute, use and document the
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FRBF algorithm on this widely used platform. Finally, the usage of an open source li-

censing model allows anyone to explore and extend it to theirown needs, opening a way

for future improvements and an yet better implementation orclassification algorithm.



Chapter 2

Flexible Kernels for RBF Networks

This chapter describes the Radial Basis Functions (RBF) briefly,explains the RBF neu-

ral networks, details the Flexible RBF neural networks algorithm and the correspondent

enhancements introduced to the original version.

The Flexible Kernels for RBF neural networksalgorithm, defined by Falc̃ao et al.

in [14], was a breakthrough in the RBF neural networks. It is a learning algorithm used

for classification that provides adjustment of parameters,allowing extra flexibility to the

kernel structure. The tests performed proved that this algorithm is effective with real life

data.

2.1 Radial Basis Functions

A Radial Basis Function is a function whose value depends on thedistance from a point

x to a center pointc, so that

�(x, c) = �(∥x− c∥) (2.1)

The norm is to use the Euclidean distance, but other distancefunctions can be used.

RBF neural networks are typically used to build up function approximations. This

means that a RBF neural network is used as a function that closely matches, or approxi-

mates, or describes, a target function on a specific domain. The target function itself may

actually be unknown. But, in such cases, there is usually enough data from the target func-

tion domain from which one can learn, and use that knowledge to define an approximate

function.

The sum of the RBF is commonly used to approximate given functions. This can be

interpreted as a rather simple one layer type of artificial neural network (NN) that can be

expressed by the equation

g(x) =
N∑

u=1

wu�(∣∣x− cu∣∣) (2.2)

5
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where the approximating functiong(x) is represented as a sum ofN radial basis func-

tions, each associated with a different centercu, and weighted by an appropriate coeffi-

cientwu. Thewu coefficient is a weight that can be estimated using any of the standard

iterative methods for neural networks, like the least squares function. In this case, the Ra-

dial Basis Functions are the activation functions of the neural network. RBF are covered

in detail by Hastieet al. in [23] and by Buhmann in [6].

2.2 Radial Basis Functions Neural Networks

RBF neural network, as introduced in the prior section, is a type of artificial neural net-

work constructed from a function distance. The function distance is obtained from the

known domain data, called training data, which means the RBF neural network is a learn-

ing method that will try to find patterns in the training data and model it as a network. In

particular, the distance function is used to determine the weight of each known data point,

the training example, and it is called Kernel function. The work of Yeeet al. in [59] and

Hastieet al. in [23] cover RBF neural networks in detail.

Learning with RBF neural networks is therefor an approach to function approxima-

tion, which is closely related to distance weighted regression and to artificial neural net-

works. The termregressionis widely used by the statistical learning community to refer

the problem of approximating real valued functions, whileweighted distancerefers to the

contribution that each training example has, by calculating the weight of its distance to a

center point. This subject is widely studied by the scientific community, some examples

are [41, 5, 22, 4, 36, 24, 35, 23, 59, 58]. In particular, Parket al. in [40] studies universal

approximation using RBF neural networks.

As specified in detail by Mitchell in [36], in the RBF neural network approach the

learned hypothesis is a function of the form

f̂(x) = w0 +
k∑

u=1

wuKu(d(xu, x)) (2.3)

wherek is a parameter provided by the user that specifies the number of kernel functions

to be included,x is the point being classified, eachxu is an instance fromX, the training

data, andKu(d(xu, x)) is the kernel function, that depends on a distance function.

It is easy to understand that the distance function is essential for all kernel evaluations.

As previously stated, the kernel function is actually the distance function that is used to

determine the weight of each training example. In Equation2.3above, it is defined so that

it decreases as the distanced(xu, x) increases.

Even thoughf̂(x) is a generic approximation tof(x), the function that correctly clas-

sifies each instance, the contribution from each of the kernel terms is located in a region

near thexu point. It is common to choose each kernel function to be a Gaussian function
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centered at the pointxu with some variance�2
u, so that

Ku(d(xu, x)) = e
1

2�
2
u

d2(xu,x) (2.4)

This equation is the common Gaussian kernel function for RBF neural networks, but other

kernel functions can be used. The kernel functions have beenwidely studied and is easy

to find literature about it, for instance, Hastieet al. in [23] describes the Gaussian RBF

and Powell in [42] details RBF approximation to polynomial functions.

2.2.1 Neural Architecture

The function in Equation2.3can be viewed as describing a two layer network where the

first layer computes the values of the variousKu(d(xu, x)), and the second layer computes

a linear combination of the unit values calculated in the first layer. In the basic form,

all inputs are connected to each hidden unit. Each hidden unit produces an activation

determined by a Gaussian function, or any other function used, centered at some instance

xu. Therefor, its activation will be close to zero unless the inputx is nearxu. The output

unit produces a linear combination of the hidden unit activations. An example of a RBF

neural network is illustrated in Figure2.1.

Figure 2.1: A RBF neural network from Mitchell [36].

In the neural network terminology, the variables of Equation 2.3are called differently,

though they mean the same. In particular,k is the number of neurons in the hidden

layer,xu is the center vector for neuronu, andwu are are weights of the linear output

neuron. An example of a RBF neural network with the neural network terminology is

illustrated in Figure2.2. The work of Haykin in [24] discusses neural networks in detail

while Hartmanet al. in [22] focus on neural networks with Gaussian hidden units as

universal approximations, and more recently, Zainuddinet al. in [60] discusses function

approximation using artificial neural networks.
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Figure 2.2: A RBF neural network with NN terminology adapted from Mitchell [36].

2.2.2 Radial Basis Function Network Training

RBF neural networks are built eagerly from local approximations centered around the

training examples, or around clusters of training examples, since all that is known is the

set of the training data points. Hence, the training data setis used to build the RBF neural

network, which is achieved over two consecutive stages. Thefirst stage selects the centers

and set the deviations of the neural network hidden units. The second stage optimizes the

linear output layer of the neural network.

First Stage

As previously stated, on the first stage the centers must be selected. The center selection

should be assigned to reflect the natural data clustering. The selection can be done uni-

formly or non-uniformly. The non-uniform selection is especially suited if the training

data points themselves are found to be distributed non-uniformly over the testing data.

The most common methods for center selection are:

Sampling: use randomly chosen training points. Since they are randomly selected, they

will represent the distribution of the training data in a statistical sense. However,

if the number of training data points is not large enough, it may actually be a poor

representation of the entire data domain.

K-Means: use the K-Means algorithm, explained by MacQueen and Bishop in [34, 4], to

select an optimal set of points that are placed at the centroids of clusters of training

data. Given ak number of clusters, it adjusts the positions of the centers so that

(i) each training point belongs to the nearest cluster center, and (ii) each cluster

center is the centroid of the training points that belong to it. The EM algorithm,

explained in detail by Dempsteret al. in [13], can also be used for this task.
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Once the centers are assigned, it is time to set the deviations. The size of the devi-

ation determines how spiky the Gaussian functions are. If the Gaussians are too spiky,

the network will not interpolate between known points, and thus loses the ability to gen-

eralize. On the other end, if the Gaussians are very broad thenetwork loses fine detail.

This is actually a common manifestation of the fitting dilemma, over-fitting is as bad as

under-fitting. For an example of such Gaussian shapes, see Figure2.3.

Spiky Gaussian at the left and broad Gaussian on the right.

Figure 2.3: An example of a spiky and a broad Gaussian, adapted from Wikipedia [57].

To obtain a good result, the deviations should typically be chosen so that Gaussians

overlap with a few nearby centers. The most common methods used for such task are:

Explicit: the deviation is defined by a specific value, for instance a constant.

Isotropic: the deviation is the same for all units and is selected heuristically to reflect the

number of centers and the volume of space they occupy.

K-Nearest Neighbor: where each unit deviation value is individually set to the mean

distance to its K nearest neighbors. Hence, deviations are smaller in tightly packed

areas of space, preserving detail, and higher in sparse areas of space. The work of

Coveret al. in [11] and Haykin in [24] give a detailed insight.

Second Stage

Once the centers and deviations have been set, the second stage takes place. In this stage,

the output layer can be optimized using a standard linear optimization technique, the

Singular Value Decomposition algorithm (SVG) as describedby Haykin in [24].

The singular value decomposition is an important way of factoring matrices into a

series of linear approximations that expose the underlyingstructure of the matrix. This

allows faster computation since patterns are used instead of the entire data itself.
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The training of the RBF neural network is concluded when this stage finishes. The

result is a trained neural network that defines a model for thedomain of the training data.

2.2.3 Classification with Radial Basis Function Network

Classification using the learned RBF neural network is quite simple. Once the RBF neural

network is defined through the learning procedure, as described in the previous section, it

holds a model that can be applied to new, unseen, data of the same domain as the training

data. Hwanget al. in [26] describe an efficient method to construct a RBF neural network

classifier.

When the model is applied, the artificial neural network will be able to classify, hope-

fully correctly, the new data by calculating the distance ofeach new data point to each of

the centers of the model. This is performed through the activation of the hidden units, as

in any other artificial neural network. When a new data pointx is being classified, it will

activate the hidden unitxu, wherexu is the nearest center to the pointx. Following Figure

2.4, the classification ofx results in (i) 20% of probability to belong to the first cluster of

classA, (ii) 10% of probability to belong to the second cluster of classA, (iii) 40% of

probability to belong to classB, and (iv) 30% of probability to belong to classC.

Figure 2.4: A RBF neural network classification example adapted from Mitchell [36].

To summarize, when the obtained RBF neural network model is applied to a data point

x it will return thexu that is the nearest center tox, and classification happens.

2.3 Flexible Kernels for RBF Neural Networks

The originalFlexible Kernels for RBF neural networksalgorithm, developed by Falcãoet

al. in [14], was a breakthrough in the RBF neural networks area. This learning algorithm

is used for classification and distinguishes itself from other RBF neural network algo-

rithms by introducing extra flexibility to the kernel and by its approximation to the Bayes
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Optimal Classifier (BOC) with independent kernel regarding theclasses. The work is the

genesis of this dissertation. It follows the earlier works of Albrecht et al. and Bishopet

al. in [1, 4] and will be explained in the next sections.

As described by Hastieet al. in [23], kernel methods achieve flexibility by fitting

simple models in a region local to the target pointxu. Localization is achieved via a

weighting kernelKu, and individual observations receive weightsKu(d(xu, x)).

Different models of RBF neural networks can be found in the literature and several

methods for fitting parameters on this type of artificial neural network have already been

studied. Thus, introducing flexibility to the kernel function per seis not a new idea, for

instance Bishop in [3, 4] and Jankowski in [29] have done it previously.

2.3.1 Flexible Kernels

This approach truly innovates by using modifier functions applied to the distance compu-

tation procedure, which is essential for all kernel evaluations as seen previously in Section

2.2. But this approach also distinguishes from others because itwill sum only the kernels

from the same class, which means it is approximated to the Bayes Optimal Classifier,

described in [36] by Michell, since it preserves class independence. This isachieved by

using the training data information for constructing separate sets of kernels for each class

present in the data domain. Using this principle, the classification procedure is straight-

forward.

Continuing to follow closely the work of Falcão et al. in [14], and stated in a more

formal form, a classCi, belonging to the class setC, is attributed to a given patternx

according to the sum of all the kernels that have been adjusted for each class

argmax
Ci∈C

∑

j

wj
iKij(x) (2.5)

whereKij is a generic kernel function and thewj
i parameter leverages the importance of

a given kernel. Note that this equation is not equivalent to Equation2.2. The equations

have only one slight difference in the sum, but that difference results in two very distinct

approaches. While the traditional RBF neural network sums all the RBF, in this equation

the sum is selectively applied per class. This selective application of the sum per class

isolates the kernels and allows class independence.

Using the common Gaussian model as the choice for kernel functions, as presented in

Section2.2, Kij(x) can be rewritten as

Kij(x) = exp(−(x− cij)Σ
−1(x− cij)

t/2) (2.6)

wherecij corresponds to the kernel location parameter andΣ to a covariance matrix

of a data set. Using the inverse of the covariance matrix allows the captured of the cor-

relations between different variables, which provides an-dimensional ellipsoid shape to
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each kernel against the common circular shape. As exemplified in Figure2.5, the Gaus-

sian model is a better representation of the clusters than the common circular shape. Note

that Equation2.6 is not equivalent to Equation2.4, since the distance function used is no

longer the usual Euclidean distance.

On the left the common circular shape and on the right the ellipsoid shape.

Figure 2.5: Example of shapes.

The inverse of the covariance matrix was selected because itis generally more ver-

satile than using the simple distance to the kernel centroidthat assumes strict variable

independence. But his approach has some drawbacks. Namely, if the covariance matrix

is singular or very ill conditioned, the use of the inverse can produce meaningless results

or strong numerical instability. Removing the highly correlated components may seem

a good ideal. Unfortunately, that is infeasible since thesemay vary among kernels and

among classes, thus not allowing an unique definition of the set that builds the highly

correlated components for removal.

To better understand this problem, a spectral decomposition can be applied to the

covariance matrix, producing the following eigensystem

Σ = P ∧ P t (2.7)

in whichP is the matrix composed of the eigenvectors and∧ is the respective eigenvalues

in a diagonal matrix format. Spectral decomposition, or eigenvalue decomposition, has

been widely studied as [19, 4, 35, 23] are examples of.

The use of a more generic strategy is suggested in order to effectively use the infor-

mation conveyed by the eigenstructure produced for each kernel. This is achieved by not

limiting the model to the inverse function but instead, consider a generic matrix function

M(∧) coupled with a scalar multiplier parameters used to weight the distance modified
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by the operatorM(⋅), the diagonal matrix function.Kij(x) can now be rewritten as

Kij(x) = exp(−(x− cij)PM(∧)P t(x− cij)
ts) (2.8)

This equation is thus more generic than the general Gaussiankernel model in Equation

2.6. In fact, the news parameter value is a generalization of the1/2 constant. Larger

values ofs correspond to more spiky Gaussians, and smaller ones to broader shapes that

decrease slowly towards 0. These Gaussians shapes can be seen in Figure2.3.

It was found that using the parameter inside the Gaussian kernel, instead of conside-

ring it as a common weight multiplier, has a strong positive effect in the discrimination

capabilities of the model.

A variety of models have been tested by Falcão in [14] et al. for the diagonal matrix

functionM(⋅), listed on Table2.1. Model (0) stands for the simplest RBF kernel, which

does not account for the correlation between variables, since it provides circular shapes for

kernels instead of ellipsoids as all the remaining models. The traditional Gaussian kernel

of Equation2.6corresponds to function model (3), the Mahalanobis functions detailed by

Mardiaet al. in [35], and, like in model (6), a constant", with a small value like 0.01, is

added to the expression to ensure that numerical problems donot arise.

(0) 1 (1) (1− �) (2) (1− �)2

(3) 1/(�+ ") (4) exp(1− �) (5) exp(1− �)2

(6) (1− log(�+ ")) (7) (1− �)/(1 + �) (8) ((1− �)/(1 + �))2

Table 2.1: Distance weighting function models from Falcãoet al. [14].

The learning procedure for this, described in the followingtwo sections, is the same

for all the models. It is performed over two stages and is quite similar to the procedure

explained in Section2.2.2.

Stage One of Flexible Kernels Learning Procedure

On this initial stage, the classifier0 uses an unsupervised method to construct the network

topology where the kernel positions and the global shapes are set. Most of the network

parameters required are defined without any customization from the user. Actually, only

two parameters are required from the user (i) the total number of kernels in the model

and, (ii) the distance modifying function type.

The algorithm starts by defining the number of kernels in eachclass. This is done

through the proportion of the total variance in the trainingdata set associated with that

class. The variance is used to adjust the number of kernels per class regarding how the

class is spread on the domain data. Then, the training data isseparated according to each

class, and the kernel centers are determined through the usual K-Means clustering algo-

rithm. After the clustering procedure, the kernel locationparameters correspond to the

centroids of the resulting clusters, and thewij parameter of Equation2.5 is set to the
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number of patterns that are included in each cluster. Finally, the spectral decomposition

is performed for the covariance matrices of each kernel to determine the eigenvector ma-

trix and the corresponding eigenvalues. An overview of thisfirst stage can be seen in

Algorithm 2.1.

Algorithm 2.1 Stage One of Flexible Kernels Learning Procedure
Require: Number of kernels, instance modifying function type, training data.

1: var ← variance(classes, total kernels, training data)
2: for all class in classes do
3: num kernels← adjustKernels(total kernels, var, class, training data)
4: kernels[class]← kmeans(training data, num kernels)
5: for all kernel in kernels[class] do
6: eigen[kernel] ← pca(kernel) {Spectral decomposition for the covariance ma-

trices to find the eigenvector matrix and the corresponding eigenvalues.}
7: end for
8: end for

Stage Two of Flexible Kernels Learning Procedure

After the conclusion of stage one, the classes of each pattern in the training data are used

to learn the adjustment of appropriate spread parameters for all kernels, i.e. the widthss

of each kernel are determined.

This part of the algorithm starts by assigning a common low value for all clusters of all

classes. This value is increased iteratively by a fixed amount, checking the classification

error rate at every iteration. Typically, as this parameterincreases, the error decreases

down to a local minimum and is then used as an initial estimate. At this point, a simple

Hill-Climbing greedy algorithm starts to individually adjust estimates for each kernel.

The Hill-Climbing algorithm can be easily found in the literature, as [36, 45, 20] are

examples of.

The parameter adjustment is also performed iteratively percluster by incrementing

and reducing the spread parameter value and testing its accuracy. First, increment the

value and check the classification accuracy. If the accuracyresult is better, then keep that

value as the current best spread parameter for the current cluster. Otherwise, reduce the

value and check the classification accuracy. Again, if the accuracy result is better, then

keep that value as the current best spread parameter for the current cluster. This method

uses two parameters (i)d, the parameter that will make varys, and (ii)�, a constant that

will make varyd. Thed parameter starts with a, somewhat, large value, implying larger

modifications to thes parameter for each kernel. But, as the algorithm proceeds, the d

parameter decreases, and the change ins approaches zero. This procedure is performed

until a maximum number of thirty iterations is achieved or there are no changes in the

classification accuracy for three consecutive iterations.An overview of this second stage
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can be seen in Algorithm2.2.

Algorithm 2.2 Stage Two of Flexible Kernels Learning Procedure
1: s[]← random() {Attribute a random initial value to all clusters.}
2: d← 0.23
3: no cℎanges← 0
4: number iterations← 30
5: while number iteration > 0 do
6: number iterations← number iterations− 1
7: for all cluster in random(clusters) do
8: s[cluster]′ ← s[cluster]× (1 + d) {Increase the testing spread.}
9: if betterAccuracy(s, s′) = s′ then

10: s[cluster]← s′ {Keep this value for the current cluster.}
11: no cℎanges← 0
12: else
13: s[cluster]′ ← s[cluster]× (1− d) {Decrease the testing spread.}
14: if betterAccuracy(s, s′) = s′ then
15: s[cluster]← s′ {Keep this value for the current cluster.}
16: no cℎanges← 0
17: else
18: no cℎanges← no cℎanges+ 1
19: if no cℎanges = 3 then
20: number iterations← 0 {No changes for 3 iterations, so stop.}
21: end if
22: end if
23: end if
24: d← �× d {Updated multiplying it by a constant.}
25: end for
26: end while

Finding thes value by testing the classification accuracy constitutes the final classifier,

thus resulting on a RBF neural network ready for classification.

Classification using the Flexible Kernels

After the learning procedure has taken place, the classification is straightforward. Since

the kernels are isolated, the classes are independent, which means that the classification

of any given point is performed by measuring the distance between the point and the sum

of the centroid distances of each class. The point will belong to the nearest class,i.e. it

will be classified as a point of the class that is nearest to it.

Following the example of Figure2.6, the FRBF will return (i) 0.3 when tested for

classA, (ii) 0.4 when tested for classB, and (iii) 0.3 when tested for classC. Thus,x

belongs toB since it is the class to whichx has the higher probability to belong to.

Note that this is different from the traditional RBF neural networks, where the sum is

applied to all the kernels. Simply stated, (i) in the traditional approach, an instancex is
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Figure 2.6: A FRBF classification example adapted from Mitchell [36].

applied to the RBF neural network and it returns the probability of x to be part of each

class cluster, as seen in Figure2.4; while (ii) in this approach, an instancex is applied to

the sum of the kernels of a class, and returns the probabilityof x to be part of that class.

This difference is easily viewed by comparing Figures2.4and2.6.

2.4 Proof of Concept Prototype

Following the procedures described for the FRBF in the previous section, a prototype has

been implemented in order to prove the algorithm concept. Itwas codenamed Remora.

The prototype was developed using the C programming language and the Microsoft

Visual C++1 development environment. To perform the spectral decomposition, it made

use of the Principal Components Analysis (PCA), detailed by Murtaghet al. [38] and

Mardiaet al. in [35]. An implementation of the PCA standard ANSI C library, whichhas

been developed by Murtagh, was used for this.

The implementation followed the algorithm strictly, whichmeans that the parameters

described in the algorithm are constants, except for the identified user parameters, even

when a parameter could be parameterized by the user, such as thed parameter listed in

Algorithm 2.2. During the development of the prototype, a bug in the PCA library was

found and promptly fixed.

The prototype resulted in a stand alone Microsoft Windows2 application that executed

from the command line. The application works in three distinct modes and the command

line parameters depend on the selected run mode. The application supports the following

command line parameters:

Function Type: the index of the function type to use, from the Table2.1.

1Microsoft and Visual C++ are registered trademarks of Microsoft Corporation.
2Microsoft Windows is a registered trademark of Microsoft Corporation.
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Model File: the resulting learned model output file, only for run modesC andV.

Run Mode: the run mode:A (Mode Adjust), to adjust the RBF neural network model;

C (Mode Classify), to perform the classification, it outputs the data point index and

the class prediction; andV (Mode Validate), to perform the validation, it performs

the classification, outputs the data point index and the class prediction, and displays

the accuracy and the confusion matrix.

Input File: the input file that holds the testing data, when in run modeA, or the data to

classify, on the other run modes,C andV.

Number of Kernels: the total number of kernels in the model, only for run modeA.

Clustering Function: the clustering function to use, only for run modeA: 1 (Cluster

K-Means), to use the K-Means;2 (Cluster EM), to use the EM algorithm; and3
(Cluster AHCL), to use the complete linkage.

Output File: the resulting classification output file name, only forC andV run modes.

Verbosity: the type of verbosity during execution:1, verbose, or0, no verbose.

In order to be used, the application has to be called twice. Once in theA run mode, for

training, and a second execution in the run modeC, for classification, orV, for classifica-

tion and accuracy validation. The execution in the trainingmodeA results in the writing

of a model file, namedoutput.rem, that holds the artificial neural network model. This

file will later be used when the application is executed for the classification task, in theC
andV run modes. There are two main difference between theC andV run modes. They

both perform classification on the input data, read from the CSV input file, and they both

output the result into a CSV file, containing the data points index and the class to which

they belong to. But in theC run mode the input file cannot contain the class column

while in theV run mode the input file must contain the class column, plus it displays

the accuracy and the confusion matrix. Figure2.7 exemplifies the prototype application

usage.

The prototype was tested with several of the most common datasets from the StatLog

[47] repository with very good results, as stated in Table2.2.

Dataset Kernel Function Train Accuracy (%) Test Accuracy (%)
dna (1) 98.30 95.62

letter (3) 98.95 95.95
satimage (9) 94.88 90.35
shuttle (7) 99.90 99.85

Table 2.2: StatLog results using the prototype, adapted from Falc̃aoet al. [14].
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Training:
remora.exe 1 A "d:/thesis/dataset/train.csv" 6 1 1

Classification:
remora.exe 1 C output.rem "d:/thesis/dataset/classify-nc.csv"

"d:/mestrado/dataset/result.txt" 1

Validation:
remora.exe 1 V output.rem "d:/thesis/dataset/classify-wc.csv"

"d:/mestrado/dataset/result.txt" 1

Figure 2.7: Prototype usage example.

Despite the results, unfortunately the prototype was unable for redistribution since it

was a very specific stand alone application. It had not been developed to be included, or

used by, other applications or frameworks, therefor it had one unique usage and a single

specific purpose.

2.5 Improvements

As stated before, the enhancement of the original algorithm, as described in Section2.3, is

one of the focus of this dissertation. Several improvementshave been introduced, mostly

related to the algorithm parameterization.

Despite the changes described here, the original algorithmwas preserved unchanged.

The only exception is the testing of the spread values, wherethe increase and the decrease

of values are always both tested. Apart from this exception,the resulting implementation,

as described in the following Chapter4, allows the use of the original version. In fact, the

default configuration reflects the original version of the algorithm.

The enhancements that have been introduced are described inthe following sections.

Parameterization

One obvious and simple improvement was to allow the user to customize the parameters

that were declared static, such as thed parameter listed in Algorithm2.2. Hence, all pa-

rameters that could be defined by the user moved from constants values into user defined

values. Namely: (i)d, the initial value ofd; (ii) ", required by some models; (iii)niter,

the maximum number of iterations to perform when findings; and (iv)niter cℎanges,

the number of iterations without changes that can occur whenfinding s. Note that the�

parameter in Algorithm2.2 from the Stage Two of learning procedure in Section2.3.1,

is not parameterized. The reason for such design option camefrom the prototype results

that indicated that the� parameter could be automatically inferred with very good results,

thus removing the need for the user to tune this parameter. Hence, the variation ofd per
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iteration occurs from the following formulad = d start+ iterniter ∗ (d end− d start)

where (i)d start is the initiald value; (ii) iter is the current iteration; (iii)niter is, as

seen before, the maximum number of iterations to perform when findings; and (iv)d end

is the lower threshold ford, meaningd will never be lower than 0.01.

Testing Spread Values

As described in the Stage Two of the learning procedure algorithm, in Algorithm2.2a s′

greater value is tested, but as′ lower value is only tested if the greater value did not yield

a better accuracy value than the one found up to that moment. This has been changed to

always test the increase and the decrease of the spread parameter. This means that a lower

value will always be tested even if the greater value resulted in a better accuracy than the

one found up to that moment.

This is the only modification that cannot be parameterized toallow the execution of the

algorithm with the original behavior. This means that the algorithm will always execute

using this improvement.

PCA Scale Variance

The Principal Components Analysis (PCA), used for the spectral decomposition, can be

scaled to have unit variance before the analysis takes place. The scaling will be performed

by dividing the centered columns by their root-mean-square, as Beckeret al. states in [2].

In practice, this means that the spectral decomposition will be performed only after all

values have been scaled.

Evaluate Each Cluster Individually

In the original algorithm, the classification of a given point is calculated using the sum

of the centroid distances per class, as previously described. But it can also be calculated

using just the individual centroid distance.

In the original version, the distance of all the centroids issummed per each class, and

a point is classified against the distance of the class. With this enhancement, a point can

be classified by calculating the distance against an individual class centroid.
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Chapter 3

R

This chapter describes R and why it was selected as the targetplatform for the new im-

plementation of theFlexible Kernels for RBF neural networksalgorithm. Other solutions

have been considered, such as Java1 and .Net2 frameworks, but since they have not been

selected as the target development platform, they are not mentioned here. This chapter

also covers the official repository, that holds the packagesthat can be used to expand R,

and the mechanisms provided for development.

3.1 What is R?

R is a programming language, a development frameworkand asoftware environment

for statistical computing, modeling and data visualization. It was created by Ross Ihaka

and Robert Gentleman [27] at the University of Auckland, in New Zealand, and it im-

plements the S programming language, developed at Bell Laboratories3 by Rick Becker,

John Chambers and Allan Wilks.

R is currently a GNU4 project developed by the R Development Core Team and can

be regarded as an open source implementation of the S language, providing an easy and

accessible route to research in statistics. This makes R very similar to S, it even supports

much code from S allowing it to be executed unaltered, and therefor almost all literature

targets both systems.

R is a language and cross platform environment that uses a command line interface.

Pre-compiled binary versions are provided for various operating systems and there are

graphical user interfaces available on some of those systems. It is highly extensible, pro-

vides graphical techniques and a wide variety of statistical computing, like linear and

nonlinear modeling, classical statistical tests, time-series analysis, neural networks, clas-

sification and clustering. Some of R strengths include:

1Java is a registered trademark of Sun Microsystems.
2.Net is a registered trademark of Microsoft Corporation.
3Formerly AT&T, now Lucent Technologies.
4GNU is a registered trademark of the Free Software Foundation.
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∙ an effective data handling and storage facility;

∙ a suite of operators for calculations on arrays, in particular matrices;

∙ a large, coherent, integrated collection of intermediate tools for data analysis;

∙ support for much S code, allowing it to be executed unaltered;

∙ ease to produce well-designed publication-quality plots,including mathematical

symbols and formulas where needed;

∙ graphical facilities for data analysis and display either on-screen or on hard copy;

∙ an extension mechanism that allows contributions;

∙ a well-developed, simple and effective programming language which includes spe-

cial operators, conditionals, loops, user-defined recursive functions and input and

output facilities.

For all the stated reasons, R is widely used for statistical software development and

data analysis, making it thede factostandard among statisticians.

3.2 R Language

Due to the similarity between R and S, the R language and its natural evolution follows

S. There is a set of books that characterize the language, namely:

1. The New S Language, which is the basic reference for R and was written by Becker

et al. [2],

2. Statistical Models in S, that details the features included in the early nineties and

was written by Chambers [7], and

3. Programming with Data, that describes the formal methods and classes of the meth-

ods package and was also written by Chambers [8].

Despite these S references, there is a specificR Language Definition[52] that defines

the R language. There is also a frequently asked questions (FAQ) [25] that covers the

basics and is a good starting point for all new R users.

The language syntax has a superficial similarity with the C programming language,

but the semantics are of the functional programming language variety with stronger affini-

ties with the Lisp and APL programming languages. In particular, it allows ”computing

on the language”, which makes possible to write functions that take expressions as an

input, a feature that is common and often useful when appliedto statistical modeling and

graphics.
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3.3 R Workspace

The R workspace is the working environment that includes thecommand prompt and the

user defined objects such as vectors, matrices, data frames,lists, functions and variables.

This means that the workspace is composed by a working area, that includes all objects

currently in memory, and a command prompt where the user can give commands such as

(i) a call to any defined function; (ii) a variable manipulation, like an assignment; or (iii) a

specific R console command, such as terminate the session or clear the workspace. The

management of objects in the workspace memory is dynamic. This means that, for in-

stance, a library, function or variable, can be loaded into,or removed from, the workspace

at any time.

During a R session, it is possible to save the state of any object from the workspace

into an external file, and load it again from the file into the workspace. At the end of a

R session, the user can save an image of the current state of the workspace, that includes

all the objects, that will be automatically reloaded the next time R is started. It is also

possible to save the current workspace state and loaded it atany time. This feature is

extremely useful to everyone that needs to keep a restore point or wants to keep a specific

state of the current work for sharing or later usage.

R comes with both a command line text console and a graphical console that provides

user friendly interaction such as a set of common R console commands and easy access

to R packages. There are also other third party R environments that potentiate the usage

of R workspace, for instance by combining the console with a script editor. But this is not

the only way to interact with R. It is possible to execute an R script by calling the R from

the system command prompt and the script as a parameter. Thatwill make R to execute

the specified script and, when finished, it will return to the system command prompt.

3.4 Comprehensive R Archive Network

R comes with a set of pre-installed packages that form its basis. In order to expand

these basic capabilities, other packages can be obtained from a centralized repository, the

Comprehensive R Archive Network (CRAN). CRAN is a family of Internet sites that hold

a very wide range of modern statistical packages.

A package is a library, usually about a specific topic, area orfunctionality, that con-

tains a set of functions, data, and the correspondent documentation. The data present in

the packages is optional and is usually used to support, test, or illustrate the functions of

the package.

Each package expands R by providing new functions to it. The packages are usually

available to the scientific community through the R centralized repository CRAN. Obtain-

ing and using a package is performed by downloading the package from CRAN and then
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loading it into the workspace. The graphical console assists the user in this task, making

it quite easy and straightforward.

As stated before, one of this dissertation goals is to provide the FRBF, described in

the following Chapter4, as a package in the CRAN repository as a contribution to the

scientific community.

3.5 R Development

Simply stated, R allows development through the definition of user functions and class

objects. For that, R provides the usual basic programming language mechanisms [52], like

control structure, class definition, basic data types, operators, etc.. R is interpreted, which

means slower executions when compared with similar compiled code. Nevertheless, using

R is actually quite efficient, even when it comes to working with complex operations and

large data sets. When packed, a development may be distributed and shared with others.

3.5.1 Objects

R supports two object systems, known as the S3 and the S4 objects.

Simply stated, S3 objects, classes and methods have been available in R since its

inception and are very informal. For instance, it is not required to define any data type for

its slots, commonly known in Object Oriented Paradigm (OOP)as properties or members.

The S4 objects are the new generation that tries to eliminatethe weak S3 OOP sup-

port. It requires more attention from the developer. In particular, it forces the explicit

declaration of slots with a data type and thenew() function must be used to create a S4

object.

3.5.2 Function Overloading

R supports function overloading based on data types. More precisely, a function behavior

can be defined based on the data type that it receives as an argument. For instance, the

print function, that displays a variable value on the console, changes its behavior de-

pending on the variable data type. The printing of a matrix isdisplayed differently than

an integer or an array.

The overloading mechanism is quite simple. R interprets thefunction name concate-

nated with the data type by a dot, preserving the original function signature. Figure3.1

shows how this mechanism can be declared.

This mechanism is very useful when custom implemented classes need a pretty way

to display its values to the user.
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<function>.<data type> <- function(argument1, ... ) {

[...]

}

Figure 3.1: Function overloading definition.

3.5.3 Application Programming Interface

R has an Application Programming Interface (API) that allows it to be included as, or to

include an, external library. This feature makes R a perfectcompanion for other appli-

cations, since they can make use of R and its functions and packages. This feature also

makes R a preferred target platform, since it supports communication with other external

functions allowing it to be expanded without recurring to the package mechanism.

In particular, R can interface with the C and Fortran [52] programming languages. It

can be called from both C and Fortran, and it can execute compiled C and Fortran 77

code, or any other language which can generate C interfaces,for example C++.

In particular, C implementations are common for performance reasons. Some pack-

ages actually have its functions implemented in the C programming language. This allows

a boost in performance when compared with the same implementation in R, that would

have to be interpreted.

3.5.4 Debug

Since R runs on a command line interface, debugging in R is performed via the call to

debug functions. This is true even when using the graphical console, since it does not

provide any special or extra interface for this task.

The usual debug mechanisms like break points, call stack trace, variable querying, and

manipulation of data in memory are available.

Since the usage of the debug functionality is performed via written commands, it

turns out to be verbose and script intrusion. For instance, to mark a break point on a

function, thebrowser() function call must be included precisely on the line where the

execution should be paused and the debug command line shouldbe prompted. When the

browser() function call is executed, the control returns to the R console with a special

debug prompt that allows the user to interact with the program in its current state. The

user has access to all information in scope, allowing to query and modify the data as

required.

3.5.5 Why R?

As seen along the sections of the current chapter, R providesmany features that make it

a great choice for the development of the new implementationof theFlexible Kernels for

RBF neural networksalgorithm.
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R was chosen for a number of reasons, but in particular it was selected because (i) the

R platform is quite open and extensible, allowing anyone to use it and extend it in several

ways, (ii) the CRAN repository is a great way to distribute a package to the scientific

community, and finally, (iii) R itself is widely used for statistical software development

and data analysis. In fact, it is thede factostandard among statisticians.

Hence, selecting R for this task helped achieving some of thegoals of this dissertation.
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FRBF Implementation

This chapter describes the new implementation of theFlexible Kernels for RBF neural

networksalgorithm, including its enhancements, as described in theprevious Sections2.3

and2.5. All aspects of its implementation in R are covered here, namely, the development

process, the packaging, the documentation, the problems found, the challenges overcame

and the resulting work. The resulting work is known as FRBF, theacronym of Flexi-

ble RBF that is also the name of the R function that implements the algorithm and the

distributable R package.

4.1 Development Environment

The implementation of FRBF was performed on several distinct environments under the

Windows XP1 [10] and Kubuntu2 [33] operating systems. This was necessary because

some development tasks were easier, and faster, to accomplish under certain specific en-

vironments.

Regardless of the number of environments used, there was a common version control

system that served them all. A Subversion (SVN) [9] version control server running on

Debian3 [28] has been used for this task. On the client side, the correspondent SVN client

command line tools and the operating systems specific GUI tools, TortoiseSVN [55] in

Windows XP and KSVN [39] in Kubuntu, have also been used.

Despite the number of operating systems and different software involved, there was

only one laptop used in the implementation of FRBF. The laptop hardware has a single

core Pentium4 M processor at 2GHz, 2GB of RAM and 100GB of hard disk. This partic-

ular limitation of using only one laptop, forced to boot between systems whenever it was

necessary to perform tasks that specifically required a certain environment. Each of the

software tools used had specific goals and some were only really useful when combined

1Microsoft XP is a registered trademark of Microsoft Corporation.
2Kubuntu is a Linux distribution and a registered trademark of Canonical Ltd.
3Debian is a registered trademark of Software in the Public Interest, Inc.
4Pentium is a registered trademark of Intel Corporation.
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with others. For this reason, some automatic combinations of software tools have been

implemented through scripting. The usage of two distinct operating systems and such a

variety of software increase the implementation complexity.

4.1.1 R Development Environment

The implementation of the algorithm was mainly performed inWindows XP using the

Tinn-R [15] editor. But the algorithm has also been developed in Kubuntuusing the JGR

[43] as both the text editor and the R console.

Regardless of the operating system, the official R tools have been widely used for

script execution, algorithm debugging, FRBF function testing, packaging, documentation

and build. There was one exception related with the packaging that ended being totally

performed under the Linux environment for productivity reasons.

4.1.2 Documentation Development Environment

The documentation of the FRBF package has been entirely performed on Linux. This was

because Kubuntu had almost all the necessary tools already available on the system, and

the missing ones were extremely easy to obtain and use with little or none configuration.

This task could also have been accomplished using Windows, as describe by Rossi in [44],

but there was an enormous overhead, with little gain compared to the adopted solution,

related with tool gathering, installation, configuration and a certain lack of documentation

and support on it.

Hence, the development of the packaging documentation was performed on Kubuntu,

using LaTeX, as the official documentation [53] refers, Kate [49] editor and the official R

tools for compilation and packaging.

However, the development of this dissertation has been performed on Windows XP

using the WinShell [12], MiKTeX [ 46], Ghostscript [48] and Inkscape [54] tools.

4.1.3 Packaging Development Environment

The packaging development was also entirely performed on Linux since the development

of documentation and packaging is bound. In fact, the package documentation is one of

the steps of the packaging procedure, as stated in the official documentation [53]. Thus,

the reasons for choosing Linux are the same stated in the previous section.

The packaging procedure was automated employing scripts. To do so, a R packaging

script and a shell script, which can be seen in AppendixE, were written specifically for

this task. Again, the JGR and Kate editors have been used for this task.
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4.2 Implementation

As explained before in the previous chapter, R has been chosen as the target platform for

the implementation of FRBF. First of all, R had to be learned, since the the author was

unfamiliar with it. Fortunately, there is much literature about this subject [2, 8, 25, 52, 56].

R is quite easy to understand and it has a fast learning curve.

R provides the basic development mechanisms required for this kind of task, but it

suffers from the fact that it is less used and widespread thanother more common pro-

gramming languages.

Since R is less used, the number of tools available and their functionalities cannot be

compared with the ones available for more common and widespread programming lan-

guages. In particular, the development process and the debugging task are somewhat raw.

R does provide the basic mechanisms but there are no fancy tools available to leverage

these mechanisms and make them more user friendly or more productive.

Another real problem faced was the absence of documentationaimed for the develop-

ment procedure. This forced the need for common tasks, like code documentation, to be

specifically defined for the scope of this implementation.

4.2.1 Development

R does not have a real development manual procedure where standards, code documen-

tation, good practices, design and organization are defined. The R Development Team

provides a manual of R Internals [51] but it focus on tools for writing code outside R,

like in C and Fortran, rather than focusing on a coding standard. For this reason, the au-

thor used his experience and a set of general good practices of software development to

define specific development procedures for this implementation. Hence, a small standard

has been defined from some easy and generic good practices to replace the missing R

development procedure:

Declaration: all variables had to be declared and initialized;

Documentation: all the functions, classes and static constants had to be documented;

Structure: the code had to be organized through a logical domain group.

Declaration

R does not require for explicit variable declaration, it is enough to assign a value to a new

variable in order to create it. Doing so will make R to automatically infer a data type

and assigned it to the variable. For this reason, all variables used in the implementation

of FRBF were initialized prior to its first use, and the explicitdata type declaration was

usually omitted. But in some particular cases it was necessary to explicitly define a data
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type, usually by creating the variable with the correspondent data type constructor, or

to enforce a data type, usually done through a data type conversion. The need for such

data type conversions was specially common between thematrix anddata.frame data

types.

As a convention, names always started with a small letter. When it is required to

compound words, both the camel case writing and the word separation with an under-

score were accepted. The variables, constants, function names, function parameters, class

names, and class slots all use this convention. An example this convention can be seen in

Figure4.1.

#

# Get Number of Clusters.

# Retrieves the number of clusters depending on

# each class variance.

#

# @param training matrix: the training data matrix

# @param classes: array of classes

# @param config: the algorithm configuration

# @return array of clusters per class

#

getNumberOfClusters <- function(training matrix,

classes, config) {

[...]

}

Figure 4.1: An example of code declaration and documentation.

This rule was also applied to the static constants declaration. R does not provide a

specific static constant declaration, so a variable and a constant are only distinguished by

the way the variable name is written. Constants are written with all capital letters and use

an underscore as a word compound symbol.

Resulting from this rule, only S4 classes, as described in Section 3.5.1, were used.

This kind of class enforces the declaration of class slots with a data type. The class

constructor guarantees that all class slots are initialized. Sometimes default values are

used for slots, allowing the user to omit it. If a class slot value is missing and there is no

default value defined for its initialization, the constructor will issue an error and the FRBF

execution will be halted.

Code Documentation

The resulting code of FRBF is entirely documented, not only because it is a good practice

but also because of the algorithm complexity. A template hasbeen defined and used for

documenting the code. A function or class is documented in the code by having its defi-
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nition preceded by a description and, when applied, an explanation about its signature. A

comment line starts by an#, the R standard comment symbol. The function signatures use

@param <parameter>[:] <parameter description> to document a parameter

and@return <result description> to describe the result returned by the function.

The descriptions are all free form. The Figure4.1 illustrates this through a code snippet

of a function documentation.

Structure

The implementation of the algorithm was organized following the steps described in Sec-

tion 2.3.1, namely the two learning stages and the classification step.That resulted in five

distinct R source code files, each containing specific definitions about a common domain.

The script files are listed bellow by dependency order:

1. Classes, that holds the class definition, the object constructors and the required

static values;

2. Common, that contains the functions which are auxiliary or commonly used in any

part of the algorithm;

3. Model, which contains the functions responsible for the learningprocedure that

builds the RBF neural network model;

4. Predict, that holds the prediction function, responsible for the classification step;

and

5. Main, which has the main functions, in particular the functions that are available to

the end user.

4.2.2 Functions and Operators Used

One of R strongest points is the set of operators and functions available for mathematical

calculus. The functions and operators are usually optimized and are able to perform

complex calculations quite efficiently. The FRBF implementation took advantage of this

by using the basic R functions and operators whenever possible. FRBF does not make use

of any function outside the basic R installation, making it totally independent of external

package.

Some of the most interesting functions used in the implementation relate with clus-

tering, spectral decomposition and matrix computation andmanipulation. Some of the

functions and operators usage can be seen in the sample code of AppendixB.
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Function diag

Thediag function extracts or replaces the diagonal of a matrix, or constructs a diagonal

matrix. In this implementation, it is used to construct a diagonal matrix. This function is

very useful since it eliminates the need for a custom implementation of this utility.

Function kmeans

Thekmeans function executes the K-Means clustering algorithm on a data matrix. The

input data matrix is clustered by the K-Means method, which aims to partition the points

into k groups such that the sum of squares from points to the assigned cluster centers is

minimized.

The algorithm to use for clustering can be specified by the user. If no algorithm is

specified, the function default algorithm will be used.

Function max.col

Themax.col, also referred asmaxCol, is a very useful function that finds the maximum

position for each row of a matrix.

This function is used to find which column of a matrix holds thebiggest numerical

value per row. It performs very fast and discards the need fora custom implementation of

such utility.

Function prcomp

Theprcomp function performs a PCA on a given data matrix and returns a S3 class object.

This function is used to obtain the eigenvalues, from thesdev slot, and the eigenvector,

from rotation slot.

The calculation is done by a singular value decomposition ofthe data matrix, possibly

scaled as it is one of the enhancements introduced and previously referred, and not by

using theeigen function on the covariance matrix. This is generally the preferred method

for numerical accuracy.

The standard deviations of the principal components, slotsdev, is the square roots

of the eigenvalues of the covariance/correlation matrix. The calculation is actually done

with the singular values of the data matrix.

Therotation holds the matrix whose columns contain the eigenvectors.

As stated in the manual [50], the signs of the columns of the rotation matrix are arbi-

trary, and so may differ between different programs for PCA, and even between different

builds of R.
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Function sd

Thesd function computes the standard deviation of a matrix. As a result, a vector of the

standard deviation of the columns is returned.

This function is used to quickly calculate the standard deviation of a matrix. It per-

forms very well and discards the need for a custom implementation of this formula.

Function sum

Thesum function sums all the values passed as an argument. Because ofits flexibility, in

this implementation it is used to sum distinct data types, mainly matrices and vectors.

This function performs a fast sum, regardless of the data type used as argument, and

eliminates the need for several custom implementations of sum functions.

Operators

R provides a set of operators that allow the execution of complex, or tedious, operations

on a simple and straightforward way.

For instance, the operator%∗%, also referred asmatmult, multiplies two matrices. If

one of the operands is a vector, it will be promoted to either arow or column matrix to

make the two arguments conformable. If both are vectors it will return its inner product

as a matrix. The[ and[[ operators, and the corresponding closing brackets, are used

for indexing and serve for structures like matrices, vectors and data frames. For instance,

when working with matrices, a row or column can be fully specified by not specifying and

index or by explicitly specifying a set of indexes. Another example is the%in% operator

that yields true or false when a value belongs, or not, to a set.

Using such powerful operators makes the execution of certain tasks very easy. Figure

4.2 shows an example of the usage of such operators. Note that theomission of the

row index selects all the rows, but the columns index specifically exclude one particular

column.

data matrix[ , !(colnames(data matrix) %in% column name)]

This results in thedata matrix without thecolumn name column.

Figure 4.2: An example of the operators usage.

4.2.3 Model

The FRBF implementation, following the prototype implementation described earlier,

uses a model that can be saved for future usage. This potentiates the share of models

trained with specific data sets.
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The model keeps all the information that was used in the learning procedure plus

the result of that same learning procedure. TheRemoraModel is an S4 class with the

following slots:

config is the configuration used to build the model, holds the S4 class object

RemoraConfiguration;

model is the matrix with the model data information, in particularthe class centroids and

related information such as the spread parameters;

lambda is the precalculated matrix values of Equation2.7per cluster; and

kernels is the list of theRemoraKernels S4 class object with the kernels that resulted

from the K-Means.

The definition of the classes referred above can be found in AppendixA.2.

The configuration parameters are only used in the training procedure, hence it may

seem odd to include the configuration as part of the model. But its inclusion is actually

very useful because it helps to document and explain how the model was built. There

is one exception to this though, theverbose configuration parameter, that can hold any

of theVERBOSE OPTIONS value described in AppendixA.1, is used in the classification

procedure. This is totally dispensable as the user does not require to have any feedback

about the classification procedure as it goes.

The model itself is the result of the training procedure of the FRBF algorithm. The

function responsible for returning the model to the user is thefrbf function which will

be detailed later on this chapter.

4.2.4 Print

Since the FRBF implementation is based on classes created withthe purpose to support

the model, theprint function has been overloaded. This mechanism is used to allow

complex and compound data types to be displayed in a more userfriendly output, when-

ever the user needs to inspect its values. Thus, the following classes are supported by the

print function:

RemoraConfiguration prints all the configuration slot values;

RemoraKernels prints all the kernel slot values iterating whenever the values are lists;

and

RemoraModel calls the print function for all the slots, dispatching the print to the corre-

spondent class print function.

The complete list of the FRBF classes is available in AppendixA.2.
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4.2.5 Learning

The learning procedure occurs through thefrbf function. This function is responsible

for the two learning stages of the FRBF algorithm, as describedin the earlier Section

2.3.1.

Thefrbf function receives all the required parameters to build the model. Namely, it

will receive the FRBF configuration parameters and the training data. When finished, it

will return a model to the user, as already described in this chapter.

The function is actually quite simple. Following Algorithm4.1, the first step is to

build the learning configuration object from the user input values, which happens in the

first line. The FRBF algorithm really starts by performing the K-Means in line 2. Then,

the spectral decomposition takes place in line 3. Next, the best spread parameter values

for each cluster are found in line 4. An information table percentroid is built from lines 5

to 7. Then, the kernel function values, here called lambda, are calculated in line 8. Based

on the information calculated, the model is built in line 9, and returned to the user in the

last line.

Algorithm 4.1 Overview of thefrbf function steps
Require: Training data and parametrization values.

1: config ← remoraConfiguration(user learning parameters)
2: kernels← getKMeans(training matrix, config)
3: kernels← getPCA(kernels, config)
4: s values← findS(training matrix, kernels,model lambda, config)
5: for all centroid in kernels do
6: centroid table[centroid]← buildModel(kernels, s value[centroid], centroid)
7: end for
8: model lambda← findLambda(training matrix, kernels, config)
9: model← remoraModel(config, centroid table,model lambda, kernels)

10: return model

This function is one of the user interface functions and its real implementation can

be seen in AppendixB.2. The coming Section4.4.1will describe its signature, the user

acceptable values and its usage.

4.2.6 Prediction

The classification occurs through the Rpredict function. This function has been over-

loaded in order to be used with the FRBF model and, therefor, it behaves just like the

common R user expects. The overloading of thepredict function is exemplified in

Figure4.3and it follows the overloading mechanism described earlier.

Thepredict function will perform the classification for a given data setusing the

model data calculated in the learning procedure, as described in the classification task

of Section2.3.1. As stated before, the information contained in theconfig slot that is
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used in this stage resumes itself to theverbose parameter. Its code is fully available in

AppendixB.4 and, being one of the user interface functions, it can be seenin detail in the

coming Section4.4.2.

#

# Remora predict function.

#

# @param object remora model

# @param data matrix the data to use to train

# the algorithm or the data to use to classify

# @return prediction

#

predict.RemoraModel <- function(object, data matrix, ...) {

[...]

}

Figure 4.3: Remora predict function overloading.

4.2.7 Tuning

The first R versions of the FRBF algorithm had a slow execution performance. This was

mainly derived from the fact that the author, at the time, wasstill unfamiliar with many

of the R functions and operators that are optimized to perform certain operations. For

instance, matrix manipulation using an iterative process like looping for each column and

row is way too slow when compared with the matrix function manipulation and index

selection mechanisms.

Even with a not very fast execution, the performance was not an initial concern and

therefor, it was actually one of the last modifications introduced to the FRBF implementa-

tion. But the performance became a critical issue. When some ofthe tests took too much

time to build a model, it clearly became a problem that neededattention. In particular, the

learning procedure for theSatellite Image, also known assatimage, data matrix from the

StatLog [47] repository, with 4435 data points, 36 features and 6 classes, was taking over

19 hours to construct the model. Such problem clearly required a tuning process.

The tuning process was iterative and started by profiling thefunctions that had the

most number of invocations during the learning procedure, and later evolved to all the

important functions of the implementation. R does provide an amazing way to find where

inefficiencies are in the code though the functionsRprof andsummaryRprof. But the R

profiling mechanism was not really useful since it is not ableto trace uses of loops, like

for, while and repeat. Consequently, it does not identify loops as the cause of inefficiency

of the code. Hence, this task was performed with a naive approach by collecting times-

tamps in specific function points and analyzing where they where slow. Some of this
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performance information is still available and can be seen by setting the configuration

verbose parameter with thedebug value.

The profiling showed that the functions were usually spending too much time perform-

ing object manipulations like inspecting the values of a matrix and seeking the column

that had the biggest value per row. After collecting this profiling information, the tun-

ing process began. Learning advanced R techniques was the main focus by the time,

since it was necessary to acquire specific expertise to eliminate slow object manipulation.

Each time a new technique was learned and applied, the performance got better. Learn-

ing advanced R techniques payed its profits and the earlier referred data matrix learning

procedure start getting faster. When the tuning task was concluded, the model from the

previously referredsatimagedata set was built in around 5 minutes.

Since this implementation is entirely coded in R, it will never perform as fast as a

C coded version. This happens because R is interpreted and C is natively compiled, as

described in the earlier Section3.5.3.

4.2.8 Problems Found

Several challenges have been overcome during the FRBF implementation. Some of them

have already been described in the previous sections.

One of the first problems encountered was the inexistence of an Integrated Develop-

ment Environment (IDE) that allowed an easy and fast way to write, debug and refactor

the R code. Later, a performance problem raised and the same happened with the tuning

process, where the profiling had to be performed through naive techniques has explained

in the previous section. All this caused a longer and slower development and evolution

of the algorithm. Compared with current common IDEs and profiling tools available for

other programming languages, this can be seen as a productivity issue.

Another problem found was the missing of a R development manual with the defini-

tions for standards, code documentation, good practices, design and structure. This was

overcame by the definition of specific rules for this development, has already describred.

The FRBF algorithm complexity was also a challenge. During itsimplementation

several bugs raised from the algorithm interpretation and its enhancements. This is a

common situation of the development process, but coding thealgorithm correctly was not

achieved at the first try. In particular, the adjustment of appropriate spread parameters

detailed in Algorithm2.2, thefindS function, visible in AppendixB.1, required special

detailed attention. The values returned by it were very disparate from the ones obtained

by the prototype, which clearly indicated that the functionhad problems. Many debug

sessions were performed around this function before it become correct.
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4.3 Tests

The tests of the FRBF were performed with several testing methods and data sets. The

testing methods made use of distinct approaches, namely (i)unit testing, to test functions

individually; (ii) black box testing, to test the algorithmlearning and classification proce-

dures; and (iii) accuracy testing, to assert about the quality of its results and in which the

data sets were particularly relevant.

The unit testing focused only on critical functions that required special attention. The

tests were performed by calling the function with a specific set of input arguments and

confronting the output result with the expected correct result. This method allowed to test

the functions individually.

In the black box testing, the goal was to test the functions integration. This test was

performed by calling the available user interface functions, described in the upcoming

Section4.4, and checking if it behaved correctly. Figure4.4exemplifies the output result

of a black box test script, available in AppendixC.

The accuracy testing aimed at certifying that the algorithmimplementation was re-

turning good results. This was achieved by confronting the Rimplementation results with

the prototype results for the same configuration and data sets. In this test, several data sets

have been used, like the classicaliris and the StatLog [47] repository data sets. The data

sets assume a particular importance in this test, since theyare widely known and used by

the scientific community. Table4.1 characterizes some of the most interesting data sets

used in the accuracy tests.

Dataset # Training Patterns # Testing Patterns # Features # Classes
iris 125 25 4 3

wdbc 569 80 30 2
satimage 4435 2000 36 6
shuttle 43500 14500 9 7

Table 4.1: FRBF testing data sets.

4.3.1 Execution Behaviors Observed

The tests revealed some specific behaviors about the FRBF execution.

An expected behavior that was observed during the tests was that the FRBF execution

is CPU bound. This happens because the FRBF is computation intensive, since it performs

many calculus with matrices. On the other hand, it is memory efficient, since it does not

require much RAM to perform the calculations with big data sets. This happens even

when several structures loaded with thousands of data points are loaded in memory. For

instance, a matrix with 4435 data points and 37 columns,i.e. with 164095 singular values,

requires approximately 32MB of RAM, including the R environment.
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Performing full tests on frbf using wdbc.

[...]

Configuration [1]: function is euclidean, algorithm is

Hartigan-Wong, scale variance is TRUE, perform sum is TRUE.

Accuracy [1]: 0.7594937

Train Accuracy: 0.7820738

Model [1]: 1.57995 minutes.

Prediction [1]: 0.001316667 minutes.

Configuration [2]: function is euclidean, algorithm is

Hartigan-Wong, scale variance is TRUE, perform sum is FALSE.

Accuracy [2]: 0.949367

Train Accuracy: 0.8857645

Model [2]: 1.5703 minutes.

Prediction [2]: 0.001316667 minutes.

[...]

Configuration [52]: function is mahalanobis, algorithm is

Hartigan-Wong, scale variance is FALSE, perform sum is FALSE.

Accuracy [52]: 0.9746835

Train Accuracy: 0.913884

Model [52]: 0.5627667 minutes.

Prediction [52]: 0.001033334 minutes.

Configuration [53]: function is mahalanobis, algorithm is

Lloyd, scale variance is TRUE, perform sum is TRUE.

Accuracy [53]: 0.721519

Train Accuracy: 0.775044

Model [53]: 2.29115 minutes.

Prediction [53]: 0.001316667 minutes.

[...]

Configuration [141]: function is normalized difference sq,

algorithm is MacQueen, scale variance is TRUE,

perform sum is TRUE.

Accuracy [141]: 0.9367089

Train Accuracy: 0.8945518

Model [141]: 0.9513 minutes.

Prediction [141]: 0.001300001 minutes.

Configuration [142]: function is normalized difference sq,

algorithm is MacQueen, scale variance is TRUE,

perform sum is FALSE.

Accuracy [142]: 0.949367

Train Accuracy: 0.8927944

Model [142]: 1.001033 minutes.

Prediction [142]: 0.001300001 minutes.

[...]

Figure 4.4: Black box test script execution example.
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The tests also revealed one particular behavior about the adjustment of the spread

parameters, detailed in Algorithm2.2. After all clusters have been stabilized, it was com-

mon for thefindS function, visible in AppendixB.1, to grab one cluster and successively

lower itss value, making a broad Gaussian as visible in Figure2.3, in order to expand that

same cluster and thus capture more data points. This happenswhile a better accuracy is

obtained, even if between iterations only one single data point is better classified. Figure

4.5exemplifies this behavior, the∙ that belongs to both clusters was caught because the∙

cluster expanded in a broad way, otherwise it would have not been caught by it and would

have been classified as a■.

Figure 4.5: A FRBF cluster grab making a broad Gaussian example.

4.3.2 Results

Overall, after solving the problems, the result of the testswere very satisfying. Consid-

ering the complexity involved and the number of configuration possibilities available, the

tests showed a solid implementation of the FRBF algorithm and of its enhancements.

Accuracy

A special attention was given to the accuracy test results, the only test where the author

was not entirely satisfied with the results obtained.

During this test, some discrepancies appeared in the results obtained from the R and

the prototype implementations. First, from the fact that some functions had bugs, as previ-

ous described. And later, after the bug fixing, from the fact that the spectral decomposition

is performed differently in the prototype and in this R implementation. In fact, R itself

has distinct ways to obtain the eigenvalues and eigenvectors. The manual [50] states that

prcomp yields better results than theeigen function, but even though, tests were per-

formed with both to check which returned better results. Theprcomp, described earlier,

was the original choice and it was kept, since when it was usedthe algorithm returned a

better accuracy. But even using this function, the results from the prototype were usually

more accurate. A detailed analysis was performed to confirm that they diverged precisely



Chapter 4. FRBF Implementation 41

in the PCA, but no changes were made to substitute the internalR functionprcomp. Table

4.2shows a comparison of the best accuracy obtained using the prototype and the FRBF

implementation for the same data set and parameterization.

Dataset FRBF Accuracy Prototype
Train (%) Classification (%) Train (%) Classification (%)

satimage 84.23 84.46 87.46 85.30
wdbc 92.44 97.46 100 100
shuttle 98.39 98.43 100 100

Table 4.2: FRBF and prototype accuracy comparison results.

An example of the best results from the accuracy tests are shown in Table4.3. The

table shows some of the most interesting data sets used, partof the configuration applied

to it, the learning procedure computation time and the accuracy results obtained for the

training and the classification data sets. The training accuracy is calculated by applying

the learned model to the training data set.

Dataset Kernel Train Classification
Function # Time (min.) Accuracy (%) Accuracy (%)

satimage (0) 6 5.40 79.32 79.9
satimage (3) 6 4.40 84.23 84.46

wdbc (0) 3 1.55 89.98 97.46
wdbc (3) 4 0.15 92.44 97.46
iris (4) 3 0.07 93.6 96

shuttle (3) 7 153.64 98.39 98.43

Table 4.3: FRBF training and testing accuracy results.

One curious result was the classification accuracy obtainedwith the wdbc data set

using the Mahalanobis and the Euclidean kernel functions. Using distinct configurations

resulted in the same classification accuracy. This was a rarecase, since the tests indicate

that, typically, the Mahalanobis function performs betterthan the Euclidean function, as

exemplified by thesatimagetest results on Table4.3. The learning procedure is usually

not time consuming, but that was not the case with theshuttledata set, where the learning

procedure time was a lot longer than in the rest of the examples. This happened because

the training data set is much bigger than the rest of the presented data sets, as visible in

Table4.1, and thus a lot more calculations are performed. As an example, for finding the

spread parameters for satimage, each iteration performs 783000 calculations, which is

clearly computation intensive and time consuming.

Iterations

The tests revealed that the number of iterations to find the adjustments of the spread

parameters was actually very low, no matter how big the training data set was.
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The default value is set to 5% of the number of data points involved in the training.

But the tests showed that thes value was usually found with much less iterations, most of

the times with less than 25% of the default value.

Parameter Influence

There is a set of parameters that clearly influence the accuracy more than other parameters.

When using the same configurations, the tests showed that the Mahalanobis kernel

function usually performs better than the other available functions. The number of clusters

is, obviously, one of the parameters that directly influences the accuracy result. This is

because it has a direct impact in the K-Means accuracy result, which is one of the most

important factors of the learning procedure.

On the other hand, the selected K-Means algorithm, performing the sum, or not, of

the centroids distance per class and changing the PCA scale parameter seems to have less

influence in the final result. Usually the gain of changing oneof these parameters is resid-

ual, but that is not always the case, where the differences inaccuracy can be high. The test

example in Figure4.4shows some of these variations. In the example, the Configuration

1 and 2, and the Configuration 141 and 142, only differ in the perform sum value. While

the first case as a difference of 19%, the second case only differs by 1%. The combi-

nation of several of these parameters can result in greater differences, like in the case of

Configuration 52 and 53, that differ by 25%.

All this shows that FRBF is extremely flexible and allows the user to test many differ-

ent parameterizations in the search of the best model.

4.4 User Interface

Once the testing phase has been concluded the FRBF was ready forusage. The interac-

tion between the user and the FRBF is performed through a set of two functions. These

functions work as the user interface and can be used just likeany other R function. If

exported they can be seen as an Application Programming Interface (API). The following

two sections describe these user interface functions in detail.

4.4.1 FRBF

Thefrbf is the function responsible for the learning procedure. It implements the Stage

One and Stage Two of the Flexible Kernels Learning Procedure, as detailed in the Algo-

rithms 2.1 and2.2 from the earlier Section2.3.1. It also implements the algorithm im-

provements described in the Section2.5. As a result, thefrbf function returns a model,

an object of theRemoraModel S4 class as already described.

Thefrbf function has the following signature:
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data matrix: the training data, must be a matrix or a data frame;

number clusters: the total number of clusters, may be adjusted during the execution and

will be used by the K-Means algorithm, see thekmeans R function in [50];

classname: the name, or index, of the column that holds the class of the training data

matrix;

weighting function: the name of the kernel function, if none is specified the Euclidean

function will be used, the allowed values for this parametercan be seen in Table

4.4;

scalevariance: specifies if the scale should be performed for the principal components

analysis, default is True, see theprcomp R function in [50];

s value: the initial s value to use to find the kernels sigma value, the spread parameter

adjustment, it has a default value of 0.2;

d: the initial d value to use to find thes value, it will use the default value of 0.23 if no

value is specified;

epsilon: the" value for the functions that require it, if none is specified adefault value of

0.01 will be used;

niter: the maximum number of iterations to perform to finds, if no value is provided, a

default will be calculated based on the number of training data points;

niter changes: the number of iterations without changes that can occur, if this number

is reached without any change, the iteration will stop, if novalue is specified 5 will

be used by default;

perform sum: specifies if the sum of the centroids per cluster should be applied, or not,

default is True;

clustering algorithm: specifies which of the K-Means algorithms should be used, if

none is specified, the default K-Means algorithm will be used, see thekmeans

R function in [50];

verbose: specifies the algorithm verbosity during the execution, if nothing is specified it

will be silent, the allowed values for this parameter can be seen in Table4.5; and

finally it

Returns: the FRBF neural network model.

The R code implementation of thefrbf function can be seen in AppendixB.2. A

later section shows how this user interface function can be used.
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# Value Formula
(0) euclidean 1
(1) oneminus (1− �)
(2) oneminussq (1− �)2

(3) mahalanobis 1/(�+ ")
(4) exponeminus exp(1− �)
(5) exponeminussq exp(1− �)2

(6) expone log (1− log(�+ "))
(7) normalizeddifference (1− �)/(1 + �)
(8) normalizeddifferencesq ((1− �)/(1 + �))2

Table 4.4:weighting function parameter values, following Falcãoet al. [14].

no yes detail debug

Table 4.5: Acceptable values forverbose parameter.

4.4.2 Predict

Thepredict function is responsible for the classification procedure. It implements the

Classification using the Flexible Kernels, as described in the earlier Section2.3.1. As pre-

vious stated, this function overloads the basicpredict function for theRemoraModel

S4 object class. As a result, thepredict function acts just as the user expects, it receives

a model and the data to classify and returns a prediction about the classification.

Thepredict function has the following signature:

object: remora model, obtained from the learning procedure;

data matrix: the matrix, or data frame, containing the data to classify; and it

Returns: prediction through an array containing the class of each data point.

The R code implementation of thepredict function can be seen in AppendixB.4.

The next section shows how this user interface function can be used.

4.4.3 Usage

Having both functions available, its usage is quite easy. Asalready referred, the model

can be saved for later usage, this is also exemplified in this section.

Function frbf

First, the user must train the algorithm with a training dataset so that it can learn and

build the artificial neural network and return its model. This is performed by calling the

frbf function.
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For instance,model <- frbf(training matrix, class name="class",

weighting function="mahalanobis", number clusters = 7) builds a model

of 7 clusters by applying themahalanobis kernel function over the training data matrix

training matrix. The model is returned and assigned to themodel variable. Figure

4.6exemplifies this procedure combined with the classificationtask.

Function predict

After the RBF neural network model has been built, it will be used to make predictions

about the class of new, unseen, data. This is performed by calling thepredict function.

For instance,classification <- predict(model, data matrix) will apply

the modelmodel, learned from the application of thefrbf function, to classify the data

setdata matrix. Figure4.6exemplifies this procedure combined with the learning task.

Object save and load

The model obtained from the training procedure can be saved for latter usage, or for

distribution. This is a very interesting feature that R provides to its users. Using R basic

functionssave andload makes this task quite easy.

For instance, thesave(model, file = "model.Rdata") function will save the

model object into themodel.Rdata file, while theload("model.Rdata") function

will load the model object back from themodel.Rdata file into the current workspace.

Figure4.6exemplifies how the model can be saved for later usage after the learning task

has been concluded.

4.5 R Packaging

The final stage of the FRBF implementation is its packaging for distribution. Packaging

the FRBF includes its source code, the user documentation and atest script that is exe-

cuted for validation. As previously stated, this has been entirely performed under Linux,

but following Rossi in [44] allows anyone to set up a Windows system to accomplish this

task.

The packaging procedure is well documented in the R official documentation [53],

and several easy to follow documents about this subject are available, such as the tutorials

from Gómez-Rubio [18] and Gentleman [16].

The execution of this task involves several distinct steps,(i) the creation of the package

structure for the FRBF, (ii) the inclusion of the help files thatdocument the package, and

(iii) the build of the distributable package file.
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# Load the training data from a file

training matrix <- read.csv(file=

’/thesis/datasets/wdbc/wdbc train.csv’, header=TRUE)

# Train the RFB network and get the resulting model

model <- frbf(training matrix, class name="class",

weighting function="mahalanobis", number clusters = 7)

# Save the model for later usage

save(model, file = "/thesis/models/wdbc model.Rdata")

# Load the data to classify from a file

data matrix <- read.csv(file=

’/thesis/datasets/wdbc/wdbc unknown.csv’, header=TRUE)

# Predict the classification using the model

classification <- predict(model, data matrix)

# Show the classification

print(classification)

Figure 4.6: Example of the FRBF functions usage.

4.5.1 Package Structure

The first step of the packaging procedure is to gather the functions that will be packed

and build a structure, in a local directory, that provide thebasis for the other upcoming

two steps. R has two ways to perform the packaging, (i) pack the information that is in

memory, and (ii) pack from a given set of files. The second approach has been used since

the first one seemed incompatible with the S4 object class, asdetailed in an upcoming

section. A small build script, detailed in AppendixE.1, was written specially for this pur-

pose. The packaging structure created by the execution of this script is a set of directories

and files bellow the<package name> directory:

DESCRIPTION: the information description of the package, such as the nameand li-

cense;

NAMESPACE: the list of functions and classes to export, meaning the onesthat will be

visible to the user;

man/<package>-package.Rd: the package help file that documents the package;

man/<classname>-class.Rd: the classes help files, one per each class;

man/<function name>.Rd: the functions help files, one per each function;
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R/ the directory of the R source code, since the file list method is being used it simply

copies the specified files into this directory;

4.5.2 Help Files

Once the structure has been created, it is time to document the package and its functions

through the creation of the correspondent help files.

The help files go under theman/ directory and are R documentation files, with the

.Rd extension, and are actually LaTeX files in its essence. Murdoch in [37] describe the

technical side of these files for documentation purpose and Gentleman in [17] introduces

how to document the functions by writing this user help files for packaging purposes.

More generic documentation and books about writing LaTeX, for both beginners and

advanced users, is quite easy to obtain, as [32, 30, 31] are examples of.

A special note about the section namedexamples in the.Rd files. It contains R code

that is used to show an example of the function usage. But this Rcode is also used in the

latter packaging step to validate that the user will have a correct running example. These

LaTeX files will be compiled to provide the documentation when the user requests the

help for the FRBF package functions.

Each time the packaging mechanism runs, it will overwrite the existing files, so, once

created, the.Rd files are kept in a safe place and will be copied into theman/ directory

whenever the automatic packaging shell script is executed.The packaging shell script is

available in AppendixE.2.

4.5.3 Distribution File

The final step of the packaging mechanism is to create the distribution file. This is

achieved by compiling the information contained in the package structure and collect

it into a single tarball gziped file with the.tar.gz file extension.

The package must be validated before the distribution file can be built. This is per-

formed by theR CMD check <package> system command. The R code provided in

theexamples section of the help files is executed to validate that the userwill end up

with a correct running example. If the R code provided does not execute correctly, the

check command will not validate the package. This command creates a structure under

the<package name>.Rcheck directory that contains information about this validation,

like the check log file.

Finally, the distributable source package file can be built.This is done by running the

system commandR CMD build <package>, that creates the<package>.tar.gz

file for CRAN submission. A binary distribution for a specific platform can be created

through theR CMD --binary --use-zip build <package> command. The main

differences from this two distribution packages come from the fact that the first does not
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contain the files compiled, meaning they will be compiled latter, either by the CRAN for

distribution or at install time in a system that has all the necessary tools to make the build..

The FRBF has been built using thefrbf as the package name and the GNU LGPL as

the usage license, originating the creation of thefrbf 1.0.tar.gz, where 1.0 indicates

the package version. The package has been submitted to the CRANrepository and is

already available, allowing the scientific community to download and explore it.

4.5.4 Problems Found

The packaging brought up some challenges of itself.

As previously stated, R has two ways to perform the packaging(i) pack the informa-

tion that is in memory, and (ii) pack from a given set of files. The first approach used

the packaging mechanism that gathers the information from the current environment. It

issued some warnings but the installation package was created. The problem came when

trying to install the package, a critical error with little information halted the installation.

This was a serious problem, since there was not much information about it. There were

many people complaining about this error, specially in the Rdeveloping groups, but only

a couple of hints to solve it that did not work. The investigation to understand the cause

of the problem and, consequently solve it, began. It took some time to find what was

causing the problem. It was related with the S4 class objects, that somehow seemed to be

unfriendly with this packaging method. So, the later packaging mechanism had to be used

and a small build script, as detailed in AppendixE, was written specially for that purpose.

With this new mechanism in practice, all the packaging warnings and installation errors

disappeared.

The creation of the help files using Latin characters was alsoa challenge. The support

of a specific encoding is not always easy to perform, since the.Rd files are specifically

processed and are not directly compiled by the usual LaTeX process. To overcame this, a

specific encoding command must be included in the.Rd files, but unfortunately it did not

solved the problem. Hence, the solution was to replace the Latin characters with standard

non-accentuated ASCII characters.

4.5.5 Installing and Uninstalling

The installation and removal of an R package is quite easy, therefor installing and unin-

stalling thefrbf package is straightforward.

The installation of the package can be performed through thesystem commandR CMD

INSTALL frbf 1.0.tar.gz. This command will install the package in the current R

installation. Unless the package is already compiled, R will need to compile the package

before installing it. This means that the system must have all the required tools for this

task, as stated in the official documentation [53]. The package can be loaded like any
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other package though the usage of thelibrary function. The deletion of the installed

package is done through the system commandR CMD REMOVE frbf.

A simpler way to perform this actions is to use the CRAN repository, that already has

the FRBF package compiled for all the platforms. Using the graphical R interfaces eases

the execution of this task. Once installed, thefrbf package can be immediately loaded

and its functions used.
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Chapter 5

Conclusions

As stated in the introduction of this dissertation, the author was motivated by the oppor-

tunity to provide an easy way for the scientific community to use the FRBF approach

proposed by Andŕe Falc̃aoet al. in Flexible Kernels for RBF Networks[14]. Hence, the

main focus was set in providing an implementation of the FRBF that could be easily used

by everyone and integrated with, or within, a framework or third party applications. This

was also a great opportunity to perform some enhancements tothe original algorithm such

as providing a wider range of parameterization.

This chapter concludes this dissertation and covers the work performed, the scientific

contribution and the future work on FRBF.

5.1 Work Performed

The work performed to achieve the goals started by understanding the FRBF algorithm

and identifying the enhancements that could be included in this new implementation.

After that, the selection of the platform for the new implementation took place. The

R framework has been selected because of its great features.It is an open and extensible

platform with a repository that allows an easy way to distribute the new implementation

as an expansion package. It is also widely used for statistical software development and

data analysis, making itde factostandard among statisticians.

Once the platform has been selected, the implementation took place. First of all, it was

necessary to learn R and define a set of development standards. Then, the FRBF algorithm

development, and the identified improvements, took place. Aprofiling and tuning process

was performed because of some execution inefficiencies thatwere detected. There was

a set of tests, using distinct methods and data sets, that covered the development of the

algorithm and its accuracy in order to certify that it was ready for distribution.

After the FRBF algorithm has been developed, the next step was to write the user

documentation and build the distribution package.
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5.2 Release

As stated before, an implementation of the FRBF was developed in the R framework and

distributed as an expansion package for the scientific community. This package is licensed

to the end user under LGPL, allowing anyone to make use of the FRBF algorithm in a

wide range of usages and, eventually, improve it.

Delivering this FRBF improved implementation as an open source R expansion pack-

age fully covers the goals of this work.

5.3 Future Work

As a future work some improvements can be made to the FRBF.

For instance, the performance could be improved. Developing this FRBF implemen-

tation in C, or C++, would certainly allow much faster computations, allowing an obvious

time reduction for the learning procedure.

A special attention was payed to the accuracy results, the only test where the author

was not entirely satisfied because of the R PCA calculation differences when compared

with the prototype implementation. A different spectral decomposition to provide a better

accuracy would be much appreciated, since the accuracy tests have identified that there is

space for improvement in this area.



Appendix A

Static Definitions

The definitions used in the implementation of FRBF are detailedin the following sections.

This covers both the constants and the classes used on the code.

A.1 Constant Definition

The constants are used all over the implementation.

#
# Remora weighting functions available
#
# 0 Euclidean (default)
# 1 One Minus
# 2 One Minus Squared
# 3 Mahalanobis
# 4 Exp One Minus
# 5 Exp One Minus Sq
# 6 Exp One Log
# 7 - Unimplemented
# 8 Normalized Difference
# 9 Normalized Difference Sq
FUNCTION_REMORA_EUCLIDEAN <- "euclidean"
FUNCTION_REMORA_ONE_MINUS <- "one_minus"
FUNCTION_REMORA_ONE_MINUS_SQ <- "one_minus_sq"
FUNCTION_REMORA_MAHALANOBIS <- "mahalanobis"
FUNCTION_REMORA_EXP_ONE_MINUS <- "exp_one_minus"
FUNCTION_REMORA_EXP_ONE_MINUS_SQ <- "exp_one_minus_sq"
FUNCTION_REMORA_EXP_ONE_LOG <- "exp_one_log"
FUNCTION_REMORA_NORMALIZED_DIFFERENCE <- "normalized_difference"
FUNCTION_REMORA_NORMALIZED_DIFFERENCE_SQ <-

"normalized_difference_sq"
FUNCTIONS_REMORA = c(FUNCTION_REMORA_EUCLIDEAN,

FUNCTION_REMORA_ONE_MINUS,
FUNCTION_REMORA_ONE_MINUS_SQ,
FUNCTION_REMORA_MAHALANOBIS,
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FUNCTION_REMORA_EXP_ONE_MINUS,
FUNCTION_REMORA_EXP_ONE_MINUS_SQ,
FUNCTION_REMORA_EXP_ONE_LOG,
FUNCTION_REMORA_NORMALIZED_DIFFERENCE,
FUNCTION_REMORA_NORMALIZED_DIFFERENCE_SQ)

#
# Verbose
#
# No verbose, means silent
VERBOSE_NO <- "no"
# Display some information
VERBOSE_YES <- "yes"
# Displays detailed information
VERBOSE_DETAIL <- "detail"
# Displays debug information
VERBOSE_DEBUG <- "debug"
VERBOSE_OPTIONS <- c(VERBOSE_NO, VERBOSE_YES,

VERBOSE_DETAIL, VERBOSE_DEBUG)

A.2 Class Definition

The S4 class definitions used in the FRBF implementation are presented below. Note that the class
name it actually declared as a constant, which have been covered here and not in the previous
AppendixA.1 for easiness of understanding. This was a design option that allows less reference
errors and an easier way to identify a reference in the code.

#
# Class definitions.
# S4 implementation.
#

#
# Class distance definition.
#
CLASS_REMORA_DISTANCE <- "RemoraDistance"
class_distance <- setClass(CLASS_REMORA_DISTANCE,
representation(index = "numeric", distance = "numeric",

className = "character", point = "list"),
prototype = list(index=numeric(), distance=numeric(),

className=character(), point=list()))

#
# Class configuration definition.
#
CLASS_REMORA_CONFIGURATION <- "RemoraConfiguration"
class_configuration <- setClass(CLASS_REMORA_CONFIGURATION,
representation(number_clusters = "numeric",
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class_name = "character",
weighting_function="character",
clustering_algorithm="character",
scale_variance="logical", s="numeric",
d="numeric", epsilon = "numeric",
niter="numeric", niter_changes="numeric",
perform_sum="logical", verbose="character"),

prototype = list(number_clusters=numeric(),
class_name=character(),
weighting_function=character(),
clustering_algorithm=character(),
scale_variance=logical(), s=numeric(),
d=numeric(), epsilon=numeric(),
niter=numeric(), niter_changes=numeric(),
perform_sum=logical(), verbose=character()))

#
# Class remora kernels
#
CLASS_REMORA_KERNELS <- "RemoraKernels"
class_kernels <- setClass(CLASS_REMORA_KERNELS,
representation(class_name="character", eigen_values = "list",

eigen_vector = "list", clusters = "numeric",
cluster_points = "data.frame",
points_per_cluster = "list",
centroids="matrix", size="numeric"),

prototype = list(class_name=character(), eigen_values=list(),
eigen_vector=list(), clusters = numeric(),
cluster_points = data.frame(),
points_per_cluster = list(),
centroids = matrix(), size = numeric()))

#
# Class model definition.
#
CLASS_REMORA_MODEL <- "RemoraModel"
class_kernels <- setClass(CLASS_REMORA_MODEL,
representation(config=CLASS_REMORA_CONFIGURATION,

model="data.frame", lambda="list",
kernels="list"),

prototype = list(config=new(CLASS_REMORA_CONFIGURATION),
model=data.frame(), lambda=list(),
kernels=list()))
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Appendix B

FRBF Code Sample

The FRBF is open source, thus all its code is available. Nevertheless some of the most interesting
FRBF implemented code is available in the sections that follow.

B.1 Find S

ThefindS function is one of the crucial functions in the FRBF algorithm. It is responsible for
finding the best spreads values for each cluster and makes use of theinitS function to initialize
thes values.

#
# Finds the s value for each cluster.
#
# @param training_matrix: training data matrix
# @param kernels: the kernels (found on stage one)
# @param model_lambda: the previously calculated lambda
# function values
# @param config: the remora configuration
# @return s parameter per cluster
#
findS <- function(training_matrix, kernels, model_lambda,
config) {
if (verbose.showDetail(config@verbose)) {

cat(’\tFinding S values:\n’)
flush.console()

}

number_points <- nrow(training_matrix)
test_matrix <- as.matrix(getUnclassedMatrix(

training_matrix, config@class_name))
class_names <- names(kernels)
best_kernels_s <- list()
test_kernels_s <- list()
kernels_s_up <- list()
kernels_s_down <- list()
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# if necessary calculates the niter parameter
if (config@niter < 0) {

config@niter <- round(nrow(training_matrix) * 0.05)
warning("niter parameter has been calculated,

value is ", config@niter)
}
# if necessary adjusts the niter parameter to a minimum value
if (config@niter < 10) {

config@niter <- 10
warning(’niter was too low, it has been

redefined to ’, config@niter)
}

# initialize values
distance_table <- buildDistanceTable(test_matrix, kernels,

model_lambda, config)
d <- config@d
d_start <- d # prototype uses 0.23
d_end <- 0.01

iter <- 1
random_index = vector()
flat_index <- list()
# structure is passed into a flat structure and
# point cluster index is added
accuracy_matrix <- training_matrix
new_cluster_column_index <- ncol(training_matrix) + 1
for (classes in sample(names(model_lambda))) {
for (lambda in sample(c(1:length(model_lambda[[classes]]))))
{
flatIndex <- getFlatIndex(classes, lambda)
flat_index[flatIndex] <- flatIndex

points_per_cluster <- kernels[[classes]]@points_per_cluster
for (ppc_idx in (c(1:length(points_per_cluster)))) {
ppc <- points_per_cluster[[ppc_idx]]
for (idx in ppc["point_index"]) {
accuracy_matrix[idx, new_cluster_column_index] <-ppc_idx;
}
}
}

}
names(accuracy_matrix) <- c(names(training_matrix),

"cluster_index")
best_kernels_s <- initS(distance_table, kernels,

accuracy_matrix, config)
kernels_s_up <- best_kernels_s
kernels_s_down <- best_kernels_s
last_change <- config@niter_changes
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best_hit <- 0

if (verbose.showDetail(config@verbose)) {
cat(’\t\tMaximum number of iteractions: ’)
cat(config@niter)
cat(’\n\t\tIteractions: ’)
flush.console()

}

# iter

time_start <- unclass(Sys.time())
while (last_change >= 0 && iter < config@niter) {

if (verbose.showDebug(config@verbose)) {
cat(’\n\t\t#’)
cat(iter)
cat(’:\n’)
flush.console()

}
time_start_iter <- unclass(Sys.time())

# iterate over random indexs
for (index in sample(flat_index)) {
#
# try s up
#
test_kernels_s <- best_kernels_s
kernels_s_up[index] <- as.numeric(kernels_s_up[index])

* (1 + d)
test_kernels_s[index] <- kernels_s_up[index]

# get distances for new s up value
dst_up <- distances(distance_table, kernels,

test_kernels_s, config)

# classification for the distances found
class_up <- buildClassification(dst_up, config)

# accuracy for the distances
hit <- accuracy(accuracy_matrix, class_up, config,

FALSE)

if (hit > best_hit) {
# new, better s value found
if (verbose.showDebug(config@verbose)) {

cat(’\t\t\ts upper value ’)
cat(test_kernels_s[[index]])
cat(’ is better for ’)
cat(index)
cat(’ with hit of ’)
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cat(hit)
cat(’;\n’)
flush.console()

}
best_kernels_s[index] <- test_kernels_s[index]
best_hit <- hit
last_change <- config@niter_changes

}

#
# try s down
#
test_kernels_s <- best_kernels_s
kernels_s_down[index] <- as.numeric(kernels_s_down[index])

* (1 - d)
test_kernels_s[index] <- kernels_s_down[index]

# get distances for new s up value
dst_down <- distances(distance_table, kernels,

test_kernels_s, config)

# classification for the distances found
class_down <- buildClassification(dst_down, config)

# accuracy for the distances
hit <- accuracy(accuracy_matrix, class_down, config,

FALSE)

if (hit > best_hit) {
# new, better s value found
if (verbose.showDebug(config@verbose)) {

cat(’\t\t\ts lower value ’)
cat(test_kernels_s[[index]])
cat(’ is better for ’)
cat(index)
cat(’ with hit of ’)
cat(hit)
cat(’;\n’)
flush.console()

}
best_kernels_s[index] <- test_kernels_s[index]
best_hit <- hit
last_change <- config@niter_changes

}

}
d <- d_start+iter/config@niter*(d_end-d_start);
if (d < d_end) {
cat("\t\tunexpected d < d_end\n")
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d <- d_end
}
last_change <- last_change - 1
iter <- iter + 1

time_end_iter <- unclass(Sys.time())
if (verbose.showDebug(config@verbose)) {
cat(’\t\t#’)
cat(iter-1)
cat(’: ’)

cat(time_end_iter - time_start_iter)
cat(’ seconds\n’)
flush.console()

}
}

time_end <- unclass(Sys.time())

if (verbose.showDetail(config@verbose)) {
iter_time <- time_end - time_start

cat(’\n’)
cat(’\tNumber of iteractions performed: ’)
cat(iter-1)
cat(’\n’)
cat(’\tTime spent: ’)
cat(iter_time/60)
cat(’ minutes.\n’)
cat(’\tAverage time per iteraction: ’)
cat(iter_time/iter)
cat(’ seconds.\n’)
cat(’\tFinal sigma values:\n’)
print(best_kernels_s)
flush.console()

}

best_kernels_s
}

B.2 FRBF

The learning procedure of the FRBF algorithm is encapsulated in thefrbf function. This func-
tion is the learning procedure algorithm entry point for the user. It returns the model, in a
RemoraModel class, as describe in AppendixA.2, which will be used by thepredict function,
described in the AppendixB.4.

#
# Remora model function.
# The learning procedure of the frbf algorithm.
#
# @param data_matrix: the data to use to train the algorithm



Appendix B. FRBF Code Sample 62

# @param number_clusters: is the number of clusters to use in
# the training part
# @param class_name: is the name, or index, of the training
# data matrix class column
# @param weighting_function: is the name of the weighting
# function to use in the classification process
# @param scale_variance: specifies if the scale should be
# performed for the principal components analysis,
# default is True (@see prcomp)
# @param s_value: is the initial s value to use to find the
# kernel sigma value
# @param d: is the initial d value to use to find the s value
# @param epsilon: is the epsilon value for function, only for
# functions that require it
# @param niter: is the maximum number of iterations to perform
# to find s, if no value is provided, a default will
# be calculated based on the number of training data
# points
# @param niter_changes: is the number of iteration without
# changes that can occur, if the number of
# niter_changes is reached without any change, the
# iteration will stop, a default value will be used
# if none is specified
# @param perform_sum: specifies if the sum of the centroids
# per cluster should be applied, or not
# @param clustering_algorithm: specifies which of the k-means
# algorithm should be used, if none specified, the
# default k-means algorithm will be used (@see kmeans)
# @param verbose: specifies the algorithm verbosity during it’s
# execution (runtime implementation specific
# parameter)
#
# @return model
#
frbf <- function(data_matrix, number_clusters, class_name,

weighting_function = FUNCTION_REMORA_EUCLIDEAN,
scale_variance=TRUE, s_value = 0.2, d = 0.23,
epsilon = 0.01, niter=-1, niter_changes=5,
perform_sum = TRUE, clustering_algorithm = ’’,
verbose=VERBOSE_NO) {

# train
if (verbose.show(verbose)) {

cat(’Model phase...\n’)
flush.console()

}
config <- remoraConfiguration(number_clusters, class_name,

weighting_function, scale_variance, s_value, d,
epsilon, niter, niter_changes, perform_sum,
clustering_algorithm, verbose)
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model <- remora.model(data_matrix, config)
model

}

B.3 Get PCA

The getPCA function performs the spectral decomposition using theprcomp function. This
allows an easy way to get the eigenvectors and the eigenvalues.

#
# Finds the Principal Components recurring to PCA.
#
# @param kernels is the kernels
# @param config is the configuration
# @return principal component analysis
#
getPCA <- function(kernels, config) {
if (verbose.showDetail(config@verbose)) {

cat(’\tPerforming PCAs...\n’)
flush.console()

}

pca_result <- list()

# iterates for clusters/kernels
for (cluster_name in names(kernels)) {

# get cluster specific information
k <- kernels[[cluster_name]]
points_per_cluster <- k@points_per_cluster
for (cluster_id in c(1:length(points_per_cluster))) {
cluster_points <- points_per_cluster[[cluster_id]]

pca <- prcomp(cluster_points[,
c(2:length(cluster_points))],

scale. = config@scale_variance)
stddev <- pca$sdev
rotation <- pca$rotation
k@eigen_values[cluster_id] <- list(stddev)
k@eigen_vector[cluster_id] <- list(rotation)

}
pca_result[cluster_name] <- k

}

pca_result
}
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B.4 Predict

Thepredict.RemoraModel funcion overloads thepredict function to support the trained
model contained in theRemoraModel class, defined in AppendixA.2 and built by thefrbf
function of AppendixB.2.

This function is the FRBF classification stage entry point for the user. It receives the model
and classifies,i.e. predicts, to which class each of the given data points belong to.

#
# Remora predict function.
#
# @param object: remora model, obtained from
# the learning procedure
# @param data_matrix: the data to classify
# @return prediction
#
# @see frbf
#
predict.RemoraModel <- function(object, data_matrix, ...) {
model <- object

# classify
if (verbose.show(model@config@verbose)) {

cat(’Classification phase...\n’)
flush.console()

}
data_matrix <- as.matrix(getUnclassedMatrix(data_matrix,

model@config@class_name))
if (verbose.showDebug(model@config@verbose)) {

classification <- remora.predict(model, data_matrix)
} else {

classification <- remora.classify(model, data_matrix)
}
classification

}
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Tests

The FRBF implementation in R has been subjected to several tests. The tests have been automated
through R scripting, thus allowing its execution and validation without human assistance. The
following function exemplifies one of the scripted tests. When called, regardless of argument set
or not, it will make use of thewdbcdata set and iterate through all the kernel functions available,
all the K-Means algorithms available and will still test the PCA scaling factor andthe sum, or not,
of the centroids per class. Overall, it will perform 144 tests. During its execution, the configuration
used, the accuracy and the time spent for training and classification procedures will be printed.

#
# Black box test.
# Uses the WDBC data and iterates over
# all the kernel functions,
# all the K-Means algorithms,
# the PCA scaling factor true and false values, and
# the perform sum true and false values.
#
# @param clusters: the number of clusters to use
# @result returns the average accuracy for all iterations
#
test_frbf_wdbc <- function(clusters = 4) {
cat(’\nPerforming full tests on frbf using wdbc.’)

test_data_file <- "wdbc.csv"
classify_data_file <- "wdbc-for-classification.csv"

cat("\n\tUsing test data",test_data_file)
mtrx <- read.csv(file=paste(

’d:/mestrado/thesis/R/datasets/wdbc/’,
test_data_file, sep=""), header=TRUE)

mtrx <- getUnclassedMatrix(mtrx, "ID")
cat("\n\tUsing classification data",classify_data_file)
classify <- read.csv(file=paste(

’d:/mestrado/thesis/R/datasets/wdbc/’,
classify_data_file, sep=""), header=TRUE)

classify <- getUnclassedMatrix(classify, "ID")
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matrix_class_name <- "Diagnosis"
total_accuracy <- 0
iterations <- 0
cat(’\n\nBase configuration:’,clusters,

’clusters, no verbosity.\n’)
for (fn in FUNCTIONS_REMORA) {
for (ca in c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen")) {
for (sv in c(TRUE, FALSE)) {
for (psum in c(TRUE, FALSE)) {

iterations <- iterations + 1
cat(’\nConfiguration [’)
cat(iterations)
cat(’]: function is ’)
cat(fn)
cat(’, algorithm is ’)
cat(ca)
cat(’, scale variance is ’)
cat(sv)
cat(’, perform sum is ’)
cat(psum)
cat(’. ’)
flush.console()

time_startm <- unclass(Sys.time())
model <- frbf(mtrx, weighting_function=fn,

clustering_algorithm = ca,
niter = nrow(mtrx)/12,
class_name=matrix_class_name,
number_clusters = clusters,
scale_variance = sv,
perform_sum = psum,
verbose=VERBOSE_NO)

time_endm <- unclass(Sys.time())

# TRAIN ACCURACY
train_prediction <- predict(model, mtrx)

# CLASSIFICATION
time_startp <- unclass(Sys.time())
classification <- predict(model, classify)
time_endp <- unclass(Sys.time())

accuracy <- getAccuracy(classify, matrix_class_name,
classification)

total_accuracy <- total_accuracy + accuracy

cat(’\nAccuracy [’)
cat(iterations)
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cat(’]: ’)
cat(accuracy)
cat(’\nTrain ’)
showAccuracy(mtrx, matrix_class_name, train_prediction,

FALSE)
cat(’\nModel [’)
cat(iterations)
cat(’]: ’)
cat((time_endm - time_startm)/60)
cat(’ minutes.’)
cat(’\nPrediction [’)
cat(iterations)
cat(’]: ’)
cat((time_endp - time_startp)/60)
cat(’ minutes.\n’)
flush.console()
}
}

}
}

(total_accuracy / iterations)
}
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Appendix D

Documentation

The documentation of FRBF is provided through R documentation help files, which are LaTeX
files in its essence, that are packed in the distribution package.

Once the distribution package has been installed, they can be invoked usingthehelp com-
mand, or its shortcut?<function>. Thus, executing the help command in the R console for a
FRBF package item, will bring up the correspondent help documentation. The following example
is from a development version of thepredict.RemoraModel function.

\name{predict.RemoraModel}
\alias{predict.RemoraModel}
\title{ Predict Classification }
\description{
The predict.RemoraModel funcion overloads the predict function
to support the trained model contained in the
\code{\link[frbf:RemoraModel-class]{RemoraModel}} class.
This function receives the model, a data matrix to classify, and
classifies, i.e. predicts, to which class each of the given data
points belong to.
}
\usage{
predict.RemoraModel(object, data_matrix, ...)
}
%- maybe also ’usage’ for other objects documented here.
\arguments{
\item{object}{ the

\code{\link[frbf:RemoraModel-class]{model}},
obtained from the learning procedure
(see \code{\link[frbf:frbf]{frbf}}) }

\item{data_matrix}{ the data to classify }
\item{...}{ additional arguments affecting the predictions

produced }
}
\details{
The \code{data_matrix} can be a \code{matrix} or
\code{data.frame}.
It can have the class column if it has the same name, or
index, as the training matrix used in
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\code{\link[frbf:frbf]{frbf}}).
In such case it will be automatically ignored, otherwise the
class column cannot be present in the data set.

}
\value{
The result is a prediction list containing the class name
of each data point. The position of the data point in result
is the same as the position in the matrix given for
classification.

}
\references{Andre O. Falcao, Thibault Langlois and
Andreas Wichert (2006) \emph{Flexible kernels for RBF
networks}. Jornal of Neurocomputing, volume 69, pp 2356-2359.
Elsevier. }
\author{ Fernando Martins and Andre Falcao }
%\note{ }
\seealso{ \code{\link[frbf:frbf]{frbf}}
\code{\link[frbf:RemoraModel-class]{RemoraModel}}
}
\examples{
# infert data is composed by 248 points and will be split
data(infert)
# the training matrix will be use the first 100 points
training_matrix <- infert[c(1:100) ,]
# the matrix to classify will use all the other points
classification_matrix <- infert[c(101:248) ,]

# create the model
model <- frbf(training_matrix, class_name = "education",

number_clusters = 10, scale_variance = FALSE)

# predict
classification <- predict(model, classification_matrix)

# the classification points for the last
print(classification)
}
% Add one or more standard keywords, see file ’KEYWORDS’ in the
% R documentation directory.
\keyword{ classif }% __ONLY ONE__ keyword per line
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Packaging

The implementation of the FRBF algorithm required a set of scripts in order to build it automati-
cally. The following R scripts are used to pack the algorithm.

E.1 R Packaging Script

The packaging procedure is actually quite simple. All that is required to create the packaging
structure is to call thepackage.skeleton function with thefrbf as the package name and
the file list that contains the FRBF code implementation. This is precisely what the following R
script does. This script, saved on a file named0 pack remora.r, is used by the shell script
shown in AppendixE.2

#
# Packaging Script
#

#
# Version 1, September 2009
# Fernando Martins
# fmp.martins@gmail.com
# http://www.vilma-fernando.net/fernando
#

cat(’Packing Remora...\n’)

file_lst <- character(5)
file_lst[1] <- ’/home/fmm/thesis/R/src/1_classes.r’
file_lst[2] <- ’/home/fmm/thesis/R/src/2_common.r’
file_lst[3] <- ’/home/fmm/thesis/R/src/3_model.r’
file_lst[4] <- ’/home/fmm/thesis/R/src/4_predict.r’
file_lst[5] <- ’/home/fmm/thesis/R/src/5_main.r’

package.skeleton(name = "frbf", force = TRUE,
namespace = TRUE, code_files = file_lst)

cat(’\nDone.\n’)
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E.2 Shell Packaging Script

To automate the entire packaging procedure, the following shell script wascreated. It guarantees
that there is no previous packaging files nor directories, runs the R packaging script from Appendix
E.1, complements the packaging structure with the specific FRBF documentation filesfrom Ap-
pendixD, validates the package and, finally, builds a.tar.gz file ready for CRAN submission.
CRAN will then validated it and, if approved, compile it to all the available systems, making it
available for distribution.

#!/bin/sh
rm frbf_*.tar.gz
rm -Rf frbf/
rm -Rf frbf.Rcheck/
R -f 0_pack_remora.r
rm -Rf frbf/man/*.Rd
rm frbf/Read-and-delete-me
cp ../pack_files/* frbf/.
cp ../pack_files/man/* frbf/man/.
R CMD check frbf
R CMD build frbf
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Abreviations

ANSI American National Standards Institute
API Application Programming Interface
APL A Programming Language
ASCII American Standard Code for Information Interchange

BOP Bayes Optimal Classifier

CPU Central Processor Unit
CRAN Comprehensive R Archive Network
CSV Comma Separated Values

EM Expectation Maximization algorithm

FAQ Frequently Asked Questions
FRBF Flexible RBF Network

GB Giga Byte
GHz Giga Hertz
GNU GNU’s Not Unix
GUI Graphical User Interface

IDE Integrated Development Environment

LGPL Lesser General Public License

MB Mega Byte

NN Neural Network

OOP Object Oriented Paradigm

PCA Principal Component Analysis

RAM Random Access Memory
RBF Radial Basis Function

SVD Standard Value Decomposition
SVN Subversion
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